Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998187

ABSTRACT

The inherent brittleness of polyhydroxybutyrate (PHB), a well-studied polyhydroxyalkanoate (PHA), limits its applicability in flexible and impact-resistant applications. This study explores the potential of blending PHB with a different PHA to overcome brittleness. The synthesis of PHA polymers, including PHB and an amorphous medium-chain-length PHA (aPHA) consisting of various monomers, was achieved in previous works through canola oil fermentation. Detailed characterization of aPHA revealed its amorphous nature, as well as good thermal stability and shear thinning behavior. The blending process was carried out at different mass ratios of aPHA and PHB, and the resulting blends were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The blends exhibited complex DSC curves, indicating the presence of multiple crystalline forms of PHB. SEM images revealed the morphology of the blends, with PHB particles dispersed within the aPHA matrix. TGA showed similar thermal degradation patterns for the blends, with the residue content decreasing as the PHB content increased. The crystallinity of the blends was influenced by the PHB content, with higher PHB ratios resulting in an increased degree of crystallinity. XRD confirmed the presence of both α and ß crystals of PHB in the blends. Overall, the results demonstrate the potential of PHB+aPHA blends to enhance the mechanical properties of biopolymer materials, without com-promising the thermal stability, paving the way for sustainable material design and novel application areas.

2.
Biochemistry ; 62(3): 808-823, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36625854

ABSTRACT

3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.


Subject(s)
Oxidoreductases , Protons , Oxidoreductases/metabolism , Catalysis , Steroids/metabolism , Mutagenesis , Ketosteroids , Kinetics , Substrate Specificity
3.
Appl Microbiol Biotechnol ; 104(13): 5929-5941, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32468157

ABSTRACT

The ability to synthesize particular steviol glycosides (SvGls) was studied in Stevia rebaudiana Bertoni hairy roots (HR) grown in the light or in the dark under the influence of different osmotic active compounds. Manipulation of culture conditions led to changes in the morphology and growth rate of HR, as well as to an increase in oxidative stress manifested as an enhancement in endogenous hydrogen peroxide concentration in the cultured samples. The highest level of H2O2 was noted in HR cultured under light or in the medium with the highest osmotic potential. This correlated with the highest increase in the expression level of ent-kaurenoic acid hydroxylase, responsible for the redirection of metabolic route to SvGls biosynthesis pathway. An analysis of transcriptional activity of some UDPglucosyltransferase (UGT85c2, UGT74g1, UGT76g1) revealed that all of them were upregulated due to the manipulation of culture conditions. However, the level of their upregulation depended on the type of stress factor used in our experiment. Analysis of SvGls content revealed that HR grown under all applied conditions were able to synthesize and accumulate several SvGls but their concentration differed between the samples across the different conditions. The level of rebaudioside A concentration exceeded the content of stevioside in HR in all tested conditions. Concomitantly, the presence of some minor SvGls, such as steviolbioside and rebaudioside F, was confirmed only in HR cultured in the lowest osmotic potential of the medium while rebaudioside D was also detected in the samples cultured in the media supplemented with NaCl or PEG.Key Points● Several steviol glycosides are synthesized in hairy roots of S. rebaudiana.● Light or osmotic factors cause enhancement in oxidative stress level in hairy roots.● It correlates with a significant increase in the level of KAH expression.● UGTs expression and steviol glycosides content depends on culture conditions.


Subject(s)
Diterpenes, Kaurane/chemistry , Glucosides/chemistry , Oxidative Stress , Stevia/metabolism , Agrobacterium/genetics , Biosynthetic Pathways/genetics , Culture Media/chemistry , Diterpenes, Kaurane/metabolism , Gene Expression Regulation, Plant , Glucosides/metabolism , Glucosyltransferases/genetics , Light , Mixed Function Oxygenases/genetics , Osmotic Pressure , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Stevia/genetics , Stevia/growth & development
4.
Bioorg Chem ; 93: 102813, 2019 12.
Article in English | MEDLINE | ID: mdl-30833027

ABSTRACT

Hollow silica microspheres provide an ideal solid support for enzyme immobilization. We tested one of the newest development, namely MATSPHERES®, a silica openwork material as a carrier for the covalent immobilization of enzymes used to synthesize bioactive compounds. Two model enzymes - ethylbenzene dehydrogenase and EL070 lipase - were considered. They belong to two different enzyme classes and catalyse reactions taking place in various environments (aqueous and non-aqueous, aerobic and anaerobic). The enzymes were immobilized by covalent bonds (via divinyl sulfone and glutaraldehyde) on new silica material. Effectiveness of immobilization processes on the spheres grafted with amine groups and on the analogues without functionalization was determined for both enzymes. Microspheres were characterized morphologically and also their mechanical stability was examined during exposure to varying physical conditions. It was shown that MATSPHERES® due to their openwork structure and relative stability under batch and flow conditions can be a competitive SBA support for enzyme immobilization and production of bioactive compounds.


Subject(s)
Lipase/metabolism , Microspheres , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Silicon Dioxide/chemistry , Enzymes, Immobilized , Lipase/chemistry
5.
Biochim Biophys Acta Gen Subj ; 1863(6): 1027-1039, 2019 06.
Article in English | MEDLINE | ID: mdl-30876874

ABSTRACT

In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme's specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme's isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 µg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.


Subject(s)
Bacterial Proteins/chemistry , Betaproteobacteria/enzymology , Oxidoreductases/chemistry , Protein Aggregates , Polysorbates/chemistry , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...