Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(34): 7197-7205, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34253628

ABSTRACT

The striatum plays critical roles in visually-guided decision-making and receives dense axonal projections from midbrain dopamine neurons. However, the roles of striatal dopamine in visual decision-making are poorly understood. We trained male and female mice to perform a visual decision task with asymmetric reward payoff, and we recorded the activity of dopamine axons innervating striatum. Dopamine axons in the dorsomedial striatum (DMS) responded to contralateral visual stimuli and contralateral rewarded actions. Neural responses to contralateral stimuli could not be explained by orienting behavior such as eye movements. Moreover, these contralateral stimulus responses persisted in sessions where the animals were instructed to not move to obtain reward, further indicating that these signals are stimulus-related. Lastly, we show that DMS dopamine signals were qualitatively different from dopamine signals in the ventral striatum (VS), which responded to both ipsilateral and contralateral stimuli, conforming to canonical prediction error signaling under sensory uncertainty. Thus, during visual decisions, DMS dopamine encodes visual stimuli and rewarded actions in a lateralized fashion, and could facilitate associations between specific visual stimuli and actions.SIGNIFICANCE STATEMENT While the striatum is central to goal-directed behavior, the precise roles of its rich dopaminergic innervation in perceptual decision-making are poorly understood. We found that in a visual decision task, dopamine axons in the dorsomedial striatum (DMS) signaled stimuli presented contralaterally to the recorded hemisphere, as well as the onset of rewarded actions. Stimulus-evoked signals persisted in a no-movement task variant. We distinguish the patterns of these signals from those in the ventral striatum (VS). Our results contribute to the characterization of region-specific dopaminergic signaling in the striatum and highlight a role in stimulus-action association learning.


Subject(s)
Association Learning/physiology , Axons/physiology , Choice Behavior/physiology , Corpus Striatum/physiology , Dopaminergic Neurons/physiology , Photic Stimulation , Reward , Animals , Corpus Striatum/cytology , Dominance, Cerebral , Dopamine/physiology , Eye Movements/physiology , Female , Male , Mice , Mice, Inbred C57BL , Nerve Fibers/ultrastructure
2.
Elife ; 102021 07 30.
Article in English | MEDLINE | ID: mdl-34328419

ABSTRACT

Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role.


Subject(s)
Optogenetics/methods , Visual Cortex/physiology , Visual Perception , Animals , Animals, Genetically Modified , Cell Line , Choice Behavior , Decision Making , Humans , Male , Mice , Neurons/physiology , Visual Cortex/anatomy & histology
3.
Nature ; 576(7786): 266-273, 2019 12.
Article in English | MEDLINE | ID: mdl-31776518

ABSTRACT

Vision, choice, action and behavioural engagement arise from neuronal activity that may be distributed across brain regions. Here we delineate the spatial distribution of neurons underlying these processes. We used Neuropixels probes1,2 to record from approximately 30,000 neurons in 42 brain regions of mice performing a visual discrimination task3. Neurons in nearly all regions responded non-specifically when the mouse initiated an action. By contrast, neurons encoding visual stimuli and upcoming choices occupied restricted regions in the neocortex, basal ganglia and midbrain. Choice signals were rare and emerged with indistinguishable timing across regions. Midbrain neurons were activated before contralateral choices and were suppressed before ipsilateral choices, whereas forebrain neurons could prefer either side. Brain-wide pre-stimulus activity predicted engagement in individual trials and in the overall task, with enhanced subcortical but suppressed neocortical activity during engagement. These results reveal organizing principles for the distribution of neurons encoding behaviourally relevant variables across the mouse brain.


Subject(s)
Brain/physiology , Choice Behavior , Animals , Brain Mapping , Female , Male , Mice , Neurons , Reward , Task Performance and Analysis , Visual Perception
4.
Cell Rep ; 20(10): 2513-2524, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28877482

ABSTRACT

Research in neuroscience increasingly relies on the mouse, a mammalian species that affords unparalleled genetic tractability and brain atlases. Here, we introduce high-yield methods for probing mouse visual decisions. Mice are head-fixed, facilitating repeatable visual stimulation, eye tracking, and brain access. They turn a steering wheel to make two alternative choices, forced or unforced. Learning is rapid thanks to intuitive coupling of stimuli to wheel position. The mouse decisions deliver high-quality psychometric curves for detection and discrimination and conform to the predictions of a simple probabilistic observer model. The task is readily paired with two-photon imaging of cortical activity. Optogenetic inactivation reveals that the task requires mice to use their visual cortex. Mice are motivated to perform the task by fluid reward or optogenetic stimulation of dopamine neurons. This stimulation elicits a larger number of trials and faster learning. These methods provide a platform to accurately probe mouse vision and its neural basis.


Subject(s)
Choice Behavior/physiology , Dopaminergic Neurons/metabolism , Psychophysics/methods , Visual Cortex/metabolism , Visual Cortex/physiology , Animals , Female , Male , Mice , Photic Stimulation
5.
Curr Biol ; 24(7): 780-5, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24631246

ABSTRACT

The human motor system is remarkably proficient in the online control of visually guided movements, adjusting to changes in the visual scene within 100 ms [1-3]. This is achieved through a set of highly automatic processes [4] translating visual information into representations suitable for motor control [5, 6]. For this to be accomplished, visual information pertaining to target and hand need to be identified and linked to the appropriate internal representations during the movement. Meanwhile, other visual information must be filtered out, which is especially demanding in visually cluttered natural environments. If selection of relevant sensory information for online control was achieved by visual attention, its limited capacity [7] would substantially constrain the efficiency of visuomotor feedback control. Here we demonstrate that both exogenously and endogenously cued attention facilitate the processing of visual target information [8], but not of visual hand information. Moreover, distracting visual information is more efficiently filtered out during the extraction of hand compared to target information. Our results therefore suggest the existence of a dedicated visuomotor binding mechanism that links the hand representation in visual and motor systems.


Subject(s)
Psychomotor Performance , Visual Perception , Attention , Cues , Feedback, Physiological , Hand , Humans , Movement
6.
J Neurophysiol ; 109(8): 2021-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23365179

ABSTRACT

When the two hands act together to achieve a goal, the redundancy of the system makes it necessary to distribute the responsibility for error corrections across the two hands. In an experiment in which participants control a single cursor with the movements of both hands, we show that right-handed individuals correct for movement errors more with their nondominant left hand than with their right hand, even though the dominant right hand corrects the same errors more quickly and efficiently when each hand acts in isolation. By measuring the responses to rapid cursor and target displacements using force channels, we demonstrate that this shift is due to a modulation of the feedback gains of each hand rather than to a shift in the onset of the corrective response. We also show that the shift toward left-hand corrections is more pronounced for errors that lead to adaptation (cursor displacements) than for perturbations that do not (target displacements). This finding provides some support for the idea that the motor system assigns the correction to the most likely source of the error to induce learning and to optimize future performance. Finally, we find that the relative strength of the feedback corrections in the redundant task correlates positively with those found for the nonredundant tasks. Thus the process of responsibility assignment modulates the processes that normally determine the gains of feedback correction rather than completely overwriting them.


Subject(s)
Functional Laterality , Hand/physiology , Psychomotor Performance , Adult , Feedback, Physiological , Female , Humans , Male , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...