Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1372C: 196-203, 2014 12 12.
Article in English | MEDLINE | ID: mdl-25468501

ABSTRACT

Monoclonal antibodies (mAbs) are promising reagents both for the manufacture of drug substances and for their employment as a drug themselves, but to be approved for utilization, according to FDA recommendations and WHO guidelines, they have to undergo verifications regarding their purity, stability and percentage of aggregates. Moreover, stability tests of lots have to be performed in order to verify molecular size distribution over time and lot-to-lot consistency. Recent works in literature have highlighted the need for suitable, sensitive and reliable complementary analytical techniques for the characterization of mAbs and quantification of aggregates. Size-exclusion chromatography (SEC) is the reference technique in the biopharmaceutical industry for its robustness, high performance and simple use; however it presents some limitations especially toward the separation and detection of aggregates with high molecular weight. On the other hand, flow field-flow fractionation (F4) in its miniaturized version (hollow fiber flow field-flow fractionation, HF5) shows comparable performances with interesting additional advantages: a broad size range, gentle separation mechanism with low dilution factor and higher sensitivity. To propose HF5 as a complementary technique for evaluating aggregates' content in mAbs samples, a comparative study of both SEC and HF5 performances has been made. In this work, SEC and HF5 were coupled with UV and multi-angle light scattering detection and employed first in separating standard samples of proteins mixture used as a sample model. Then, a screening of mobile phases and an evaluation of separation performances was performed on a therapeutic mAbs formulation, demonstrating the complementarities between SEC and HF5 and their possible use as a separative platform approach for the characterization and quality control of protein drugs.

2.
Anal Bioanal Chem ; 406(6): 1619-27, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24337135

ABSTRACT

The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.


Subject(s)
Fractionation, Field Flow/methods , Proteins/chemistry , Animals , Avidin/chemistry , Avidin/isolation & purification , Cattle , Lasers , Light , Limit of Detection , Particle Size , Protein Denaturation , Proteins/isolation & purification , Reproducibility of Results , Scattering, Radiation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/isolation & purification
3.
Talanta ; 60(2-3): 303-12, 2003 Jun 13.
Article in English | MEDLINE | ID: mdl-18969053

ABSTRACT

Chemiluminescence detection has already been combined with different separation techniques such as HPLC and capillary electrophoresis. In this work, it was applied to gravitational field-flow fractionation, a low-cost, flow-assisted separation technique for micronsized particles suited to further on-line detection of the separated analytes. Horseradish peroxidase was used as model sample, either free in solution or immobilized onto micronsized, polystyrene beads. The chemiluminescent substrates were added directly into the mobile phase, and the continuous, steady-state chemiluminescence generated during elution was detected on-line by either a flow-through luminometer or a CCD camera. Ultra-low detection limits, two orders of magnitude lower than those achievable with spectrophotometric detection, were found. The possibility to fully separate and quantitate free and bead-immobilized enzymes is reported, as a step towards the development of multianalyte, ultra-sensitive, micronsized beads-based flow-assisted immunoassays.

4.
J Chromatogr Sci ; 38(3): 122-8, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10702920

ABSTRACT

In previous works, it has been shown that a standard ultraviolet-visible detection system can be used for quantitative analysis of heterogeneous systems (dispersed supermicron particles) in field-flow fractionation (FFF) by single peak area measurements. Such an analysis method was shown to require either experimental measurements (standardless analysis) or an accurate model (absolute analysis) to determine the extinction efficiency of the particulate samples. In this work, an experimental design to assess absolute analysis in FFF through prediction of particles' optical extinction is presented. Prediction derives from the semiempirical approach by van de Hulst and Walstra. Special emphasis is given to the restriction of the experimental domain of instrumental conditions within which absolute analysis is allowed. Validation by statistical analysis and a practical application to real sample recovery studies are also given.

5.
J Chromatogr A ; 871(1-2): 449-60, 2000 Feb 25.
Article in English | MEDLINE | ID: mdl-10735325

ABSTRACT

The combined employment of the SPLITT (split-flow thin) cell--a relatively new system for fast, continuous binary separation--and of gravitational field-flow fractionation (GrFFF)--a fractionation technique suitable for micron particle size distribution determination--was investigated for starch separation and characterization. Emphasis is placed on the main advantages of both techniques: operating under gentle earth gravity field, low cost and ease of maintenance. The reproducibility of GrFFF is demonstrated. Both the SPLITT separation and GrFFF fractionation results were checked by optical microscopy. Application examples of typical starch fractionation experiments are reported and discussed.


Subject(s)
Starch/analysis , Triticum/chemistry , Chemical Fractionation/methods , Particle Size , Starch/chemistry
6.
Anal Chem ; 72(24): 5945-54, 2000 Dec 15.
Article in English | MEDLINE | ID: mdl-11140761

ABSTRACT

Nonideal interaction of sample with the separation device is a difficulty found in chromatographic methods as well as in field-flow fractionation. However, in field-flow fractionation (FFF), greater flexibility in the choice of carrier solution composition is possible, thus reducing the need of a wide choice of surface chemistry when nonideal sample interaction is to be minimized. The use of an ultrafiltration membrane as the surface for the accumulation wall is common practice in flow field-flow fractionation. Typical membranes in use are laminates of a skin membrane onto a backing material such as woven polyester. At this point, only a limited choice of membrane chemistries is available. Many membranes have been developed for protein applications as membranes are widely used in the pharmaceutical industries. While these membranes work well for protein applications, flow field-flow fractionation is applicable to polymeric particulate as well as protein samples. Thus, sample interaction with the membrane surface is possible with nonprotein applications and these interactions can induce significant secondary effects on retention ratio and affect instrumental reliability. Also, the woven texture of membranes may detrimentally affect the FFF separation. For these reasons, the study of flow field-flow fractionation using a flat, smooth surface of controlled chemistry is of relevance. We present here the results of a new, membraneless channel that uses a bare frit as the accumulation wall and that is intended for analysis of micrometer-sized particles only. Selectivity results are comparable to those obtained with the membrane, while relative sample recovery indicates that the best quantitative performance can be obtained without the membrane. Moreover, neither sample immobilization nor losses through the frit occur when operating membraneless. On the other hand, first experimental evidence of a certain level of frit surface activity suggests that optimization of experimental conditions is required.

7.
Theor Appl Genet ; 40(8): 345-6, 1970 Jan.
Article in English | MEDLINE | ID: mdl-24435944

ABSTRACT

Artificial selection for wing length in Drosophila melanogaster resulted in changed crossing-over frequencies between three marker genes on the 2nd chromosome, b, cn and vg.The results suggest that artificial selection is a causal agent in producing the observed changes; moreover it is suggested that the modifications in cross-over frequency are controlled by extra-nuclear factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...