Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Mol Biol (Mosk) ; 46(2): 335-47, 2012.
Article in Russian | MEDLINE | ID: mdl-22670529

ABSTRACT

It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cation Transport Proteins , Cisplatin/pharmacokinetics , Copper/metabolism , Gene Expression Regulation/physiology , Silver/metabolism , Amino Acid Motifs , Animals , Binding Sites , Biological Transport/drug effects , Biological Transport/physiology , Cation Transport Proteins/biosynthesis , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Copper Transporter 1 , Gene Expression Regulation/drug effects , Mice , Organ Specificity , Structure-Activity Relationship
2.
Tsitologiia ; 52(11): 960-6, 2010.
Article in Russian | MEDLINE | ID: mdl-21268857

ABSTRACT

Abiogenic Ag(I) ions have electronic structure, similar to Cu(I) ions and can compete with Cu(I) for binding sites of proteins which transport copper from extracellular media to sites of cuproenzyme formation in the cell. Rodents receiving Ag-salts with food develop extracellular deficiency of copper associated with ceruloplasmin (Cp, the major copper-transporting protein in blood serum of vertebrates). The present work focuses on the studies of biochemical and physicochemical properties of Cp, obtained from blood serum of rats, which received AgCl with food for 4 weeks (Ag-rats). Cp-fractions from blood serum of Ag-rats (Ag-Cp) were obtained by ion-exchange chromatography with stepped gradient of NaCl. Each fraction was tested for oxidase and ferroxidase activities by direct measurement of catalytic activity in the gel, and for specific activity in holo-Cp in oxidation of chromogenic substrate. Molecular mass, electrophoretic mobility and ratio of apo- and holo-forms in Ag-Cp fractions were evaluated by immunoblotting. Ag-Cp samples did not contain products of spontaneous partial proteolytic degradation, characteristic of holo-Cp samples. Fractions of Ag-Cp and holo-Cp (from blood serum of control rats) were compared by optical spectra, tertiary structure, susceptibility to thermal denaturation, and by atomic Cu and Ag content. Ag-Cp contained 1-2% Cp, which is similar by spectral and catalytic properties with holo-Cp. [Ag]:[Cu] ration in Ag-Cp samples was about 4:1. As evidenced by circular dichroism and differential scanning calorimetric studies, the major apo-fraction of Ag-Cp lacked tertiary structure of native Cp and was significantly misfolded, which might explain its resistance to spontaneous partial proteolytic degradation.


Subject(s)
Ceruloplasmin/metabolism , Silver Compounds/pharmacology , Silver Compounds/pharmacokinetics , Animals , Copper/blood , Ion Transport/drug effects , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...