Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070208

ABSTRACT

The Zeb2 gene encodes a transcription factor (ZEB2) that acts as an important immune mediator in mice, where it is expressed in early-activated effector CD8 T cells, and limits effector differentiation. Zeb2 homozygous knockout mice have deficits in CD8 T cells and NK cells. Mowat-Wilson syndrome (MWS) is a rare genetic disease resulting from heterozygous mutations in ZEB2 causing disease by haploinsufficiency. Whether ZEB2 exhibits similar expression patterns in human CD8 T cells is unknown, and MWS patients have not been comprehensively studied to identify changes in CD8 lymphocytes and NK cells, or manifestations of immunodeficiency. By using transcriptomic assessment, we demonstrated that ZEB2 is expressed in early-activated effector CD8 T cells of healthy human volunteers following vaccinia inoculation and found evidence of a role for TGFß-1/SMAD signaling in these cells. A broad immunological assessment of six genetically diagnosed MWS patients identified two patients with a history of recurrent sinopulmonary infections, one of whom had recurrent oral candidiasis, one with lymphopenia, two with thrombocytopenia and three with detectable anti-nuclear antibodies. Immunoglobulin levels, including functional antibody responses to protein and polysaccharide vaccination, were normal. The MWS patients had a significantly lower CD8 T cell subset as % of lymphocytes, compared to healthy controls (median 16.4% vs. 25%, p = 0.0048), and resulting increased CD4:CD8 ratio (2.6 vs. 1.8; p = 0.038). CD8 T cells responded normally to mitogen stimulation in vitro and memory CD8 T cells exhibited normal proportions of subsets with important tissue-specific homing markers and cytotoxic effector molecules. There was a trend towards a decrease in the CD8 T effector memory subset (3.3% vs. 5.9%; p = 0.19). NK cell subsets were normal. This is the first evidence that ZEB2 is expressed in early-activated human effector CD8 T cells, and that haploinsufficiency of ZEB2 in MWS patients had a slight effect on immune function, skewing T cells away from CD8 differentiation. To date there is insufficient evidence to support an immunodeficiency occurring in MWS patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hirschsprung Disease/immunology , Intellectual Disability/immunology , Microcephaly/immunology , Zinc Finger E-box Binding Homeobox 2/immunology , Animals , Case-Control Studies , Child , Child, Preschool , Facies , Female , Gene Expression Profiling , Haploinsufficiency , Hirschsprung Disease/genetics , Humans , Immunity, Cellular , Immunologic Memory/genetics , Intellectual Disability/genetics , Lymphocyte Activation/genetics , Male , Mice , Mice, Knockout , Microcephaly/genetics , Mutation , T-Lymphocyte Subsets/immunology , Young Adult , Zinc Finger E-box Binding Homeobox 2/deficiency , Zinc Finger E-box Binding Homeobox 2/genetics
2.
Int J Mol Sci ; 16(8): 18878-93, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26274954

ABSTRACT

A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.


Subject(s)
Antigens/immunology , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Flow Cytometry/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Lymphocyte Activation/immunology , Microfluidic Analytical Techniques , Polymerase Chain Reaction , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...