Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemosphere ; 354: 141674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462186

ABSTRACT

This review critically examines the effectiveness of ion-imprinted membranes (IIMs) in selectively recovering lithium (Li) from challenging sources such as seawater and brine. These membranes feature customized binding sites that specifically target Li ions, enabling selective separation from other ions, thanks to cavities shaped with crown ether or calixarene for improved selectivity. The review thoroughly investigates the application of IIMs in Li extraction, covering extensive sections on 12-crown-4 ether (a fundamental crown ether for Li), its modifications, calixarenes, and other materials for creating imprinting sites. It evaluates these systems against several criteria, including the source solution's complexity, Li+ concentration, operational pH, selectivity, and membrane's ability for regeneration and repeated use. This evaluation places IIMs as a leading-edge technology for Li extraction, surpassing traditional methods like ion-sieves, particularly in high Mg2+/Li+ ratio brines. It also highlights the developmental challenges of IIMs, focusing on optimizing adsorption, maintaining selectivity across varied ionic solutions, and enhancing permselectivity. The review reveals that while the bulk of research is still exploratory, only a limited portion has progressed to detailed lab verification, indicating that the application of IIMs in Li+ recovery is still at an embryonic stage, with no instances of pilot-scale trials reported. This thorough review elucidates the potential of IIMs in Li recovery, cataloging advancements, pinpointing challenges, and suggesting directions for forthcoming research endeavors. This informative synthesis serves as a valuable resource for both the scientific community and industry professionals navigating this evolving field.


Subject(s)
Crown Ethers , Crown Ethers/chemistry , Lithium/chemistry , Ions , Adsorption
2.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903773

ABSTRACT

In this study, α-LiAlO2 was investigated for the first time as a Li-capturing positive electrode material to recover Li from aqueous Li resources. The material was synthesized using hydrothermal synthesis and air annealing, which is a low-cost and low-energy fabrication process. The physical characterization showed that the material formed an α-LiAlO2 phase, and electrochemical activation revealed the presence of AlO2* as a Li deficient form that can intercalate Li+. The AlO2*/activated carbon electrode pair showed selective capture of Li+ ions when the concentrations were between 100 mM and 25 mM. In mono salt solution comprising 25 mM LiCl, the adsorption capacity was 8.25 mg g-1, and the energy consumption was 27.98 Wh mol Li-1. The system can also handle complex solutions such as first-pass seawater reverse osmosis brine, which has a slightly higher concentration of Li than seawater at 0.34 ppm.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36839007

ABSTRACT

Removal of recalcitrant organic pollutants by degradation or mineralization from industrial waste streams is continuously being explored to find viable options to apply on the commercial scale. Herein, we propose a titanium nanotube array (based on a non-ferrous Fenton system) for the successful degradation of a model contaminant azo dye, methyl orange, under simulated solar illumination. Titanium nanotube arrays were synthesized by anodizing a titanium film in an electrolyte medium containing water and ethylene glycol. Characterization by SEM, XRD, and profilometry confirmed uniformly distributed tubular arrays with 100 nm width and 400 nm length. The non-ferrous Fenton performance of the titanium nanotube array in a minimal concentration of H2O2 showed remarkable degradation kinetics, with a 99.7% reduction in methyl orange dye concentration after a 60 min reaction time when illuminated with simulated solar light (100 mW cm-2, AM 1.5G). The pseudo-first-order rate constant was 0.407 µmol-1 min-1, adhering to the Langmuir-Hinshelwood model. Reaction product analyses by TOC and LC/MS/MS confirmed that the methyl orange was partially fragmented, while the rest was mineralized. The facile withdrawal and regeneration observed in the film-based titanium nanotube array photocatalyst highlight its potential to treat real industrial wastewater streams with a <5% performance drop over 20 reaction cycles.

4.
Molecules ; 27(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744975

ABSTRACT

Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.

5.
Int J Mol Sci ; 23(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35409042

ABSTRACT

Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.


Subject(s)
Dimethylpolysiloxanes , Polystyrenes , Escherichia coli , Polymers/chemistry , Porosity
6.
J Colloid Interface Sci ; 610: 258-270, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34922079

ABSTRACT

The avenues of catalysis and material science are always accepted and it is hoped that a state-of-the-art catalyst with exceptional intrinsic redox characteristics would be produced. This study focused on developing a multi-featured catalyst of high economical and commercial standards to meet the multi-directional applications of environmental and energy demands. Manganese (IV) oxide nanosheets made of fluffy-sheet-like g-C3N4 material were successfully synthesized by pyrolysis method. The electron-rich g-C3N4 network and semiconducting metallic oxides of MnO2 nanosheets generated high electron density interfaces within the intra-composite structure. The input of active interfaces along with strong metal-to-support interactions achieved between two parallel nanosheets in MnO2/g-C3N4 catalyst intrinsically boosted up its electrochemical and optical characteristics for it to be used in multi-catalytic fields. Successful trails of catalysts' performance have been made in three major catalytic fields with enhanced activities such as heterogeneous catalysis (reduction of nitrobenzene with rate constant of "K = 0.734 min-1" and hydrogenation of styrene with "100% conversion" efficiency, including negligible change in five consecutive cycles), photocatalysis (degradation of methylene blue dye model within 20 min with negligible change in five consecutive cycles) and electrocatalysis (oxygen reduction reactions having comparable "diffusion-limited-current density" behaviour with that of the commercial Pt/C catalyst). The enhanced performance of catalysts in transforming chemicals, degrading organic pollutant species and producing sustainable energy resources from air oxygen can mitigate the challenges faced in environmental and energy crises, respectively.


Subject(s)
Manganese , Oxides , Catalysis , Manganese Compounds , Methylene Blue
7.
Gels ; 7(4)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34940292

ABSTRACT

In this study, we propose a new approach to attain energy by salinity gradient engines with pistons based on hydrogels possessing polyelectrolyte and antipolyelectrolyte effects in a tandem arrangement, providing energy in each salinity gradient mode in a repeatable manner. The swelling of hydrogel with a polyelectrolyte effect and shrinking of hydrogel particles possessing an antipolyelectrolyte effect in desalinated water, and subsequent shrinking of hydrogel with polyelectrolyte and swelling of hydrogel antipolyelectrolyte effect in saline water, generate power in both increasing and decreasing salinity modes. To investigate the energy recovery, we scrutinized osmotic engine assemblies by a setup arrangement of pistons with hydrogel particles, with polyelectrolyte and antipolyelectrolyte effects, in tandem. The energy recovery from the tandem engine setup (calculated based on dry form for each polyelectrolyte polyacrylate-based hydrogel-SPA) and antipolyelectrolyte-sulfobetaine-based gel with methacrylate polymeric backbone-SBE) up to 581 J kg-1 and a mean power of 0.16 W kg-1 was obtained by the tandem setup of SPA and SBE hydrogel containing 3% crosslinking density and particle size of 500 microns with an external load of 3.0 kPa. Exchange of sulfobetaine with methacrylamide (SBAm), the main polymer backbone, revealed a positive increase in energy recovery of 670 J kg-1 with a mean power of 0.19 W kg-1 for the tandem system operating under the same parameters (SPA@SBAm). The energy recovery can be controlled, modulated and tuned by selecting both hydrogels with antipolyelectrolyte and polyelectrolyte effects and their performing parameters. This proof of concept provides blue energy harvesting by contributing both polyelectrolyte and antipolyelectrolyte effects in a single tandem setup; together with easy accessibility (diaper-based materials (SPA)) and known antibiofouling, these properties offer a robust alternative for energy harvesting.

8.
Polymers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430082

ABSTRACT

Many polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) represents promising method for the biofilm formation prevention. These surfaces are characterized by specific microstructural roughness able to hold lubricants inside. The lubricants create a slippery layer for the repellence of various liquids, such as water and blood. In this study, effective antimicrobial modifications of polyethylene (PE) and polyurethane (PU), as commonly used medical polymers, were investigated. For this purpose, low-temperature plasma treatment was used initially for activation of the polymeric surface, thereby enhancing surface and adhesion properties. Subsequently, preparation of porous microstructures was achieved by electrospinning technique using polydimethylsiloxane (PDMS) in combination with polyamide (PA). Finally, natural black seed oil (BSO) infiltrated the produced fiber mats acting as a lubricating layer. The optimized fiber mats' production was achieved using PDMS/PA mixture at ratio 1:1:20 (g/g/mL) using isopropyl alcohol as solvent. The surface properties of produced slippery surfaces were analyzed by various microscopic and optics techniques to obtain information about wettability, sliding behavior and surface morphology/topography. The modified PE and PU substrates demonstrated slippery behavior of an impinged water droplet at a small tilting angle. Moreover, the antimicrobial effects of the produced SLIPs using black seed oil were proven against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli).

9.
Nanomaterials (Basel) ; 10(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708124

ABSTRACT

Soft actuators based on hydrogel materials, which can convert light energy directly into mechanical energy, are of the utmost importance, especially with enhancements in device development. However, the hunt for specific photothermal nanomaterials with distinct performance remains challenging. In this study, we successfully fabricated a bilayer hydrogel actuator consisting of an active photothermal layer from incorporated Ti3C2Tx MXene in poly(N-isopropylacrylamide) p(NIPAm)hydrogel structure and a passive layer from the N-(2-hydroxylethylpropyl)acrylamide (HEAA) hydrogel structure. The uniform and effective incorporation of MXene into the NIPAm hydrogel structures were characterized by a battery of techniques. The light responsive swelling properties of the MXene-embedded NIPAm-based hydrogel demonstrated fully reversible and repeatable behavior in the light on-off regime for up to ten consecutive cycles. The effect of MXene loading, the shape of the actuator, and the light source effects on the bilayer NIPAm-HEAA hydrogel structure were investigated. The bilayer hydrogel with MXene loading of 0.3% in the NIPAm hydrogel exhibited a 200% change of the bending angle in terms of its bidirectional shape/volume after 100 s exposure to white light at an intensity of 70 mW cm-2. Additionally, the bending behavior under real sunlight was evaluated, showing the material's potential applicability in practical environments.

10.
Sci Rep ; 9(1): 15080, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636324

ABSTRACT

We introduce a simple approach to fabricate fluorescent multivalent metal ion-free alginate hydrogels, which can be produced using carbon dots accessible from natural sources (citric acid and L-cysteine). Molecular fluorophore 5-oxo-2,3-dihydro-5H-[1,3]-thiazolo[3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA), which is formed during the synthesis of carbon dots, is identified as a key segment for the crosslinking of hydrogels. The crosslinking happens through dynamic complexation of carboxylic acid groups of TPDCA and alginate cages along with sodium ions. The TPDCA derived hydrogels are investigated regarding to their thermal, rheological and optical properties, and found to exhibit characteristic fluorescence of this aggregated molecular fluorophore. Moreover, gradient hydrogels with tunable mechanical and optical properties and controlled release are obtained upon immersion of the hydrogel reactors in solutions of divalent metal ions (Ca2+, Cu2+, and Ni2+) with a higher affinity to alginate.

11.
Environ Sci Technol ; 53(15): 9260-9268, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31240919

ABSTRACT

In this paper, we propose and investigate an original approach to energy conversion based on polyzwitterionic hydrogels, which exhibit an antipolyelectrolyte effect that enables them to swell in salt water and shrink in water of a different (i.e., desalinated water) salinity. The swelling and shrinking processes run cyclically and can move a piston up or down reversibly, thus transforming the antipolyelectrolyte effect into a mechanical force based on the salinity gradient. This phenomenon makes polyzwitterionic hydrogels suitable for use in a smart, polymeric engine. We apply this approach to investigate energy recovery from a polysulfobetaine-based hydrogel. The cross-linking density, external load, particle size, and repeatability of energy recoverability of hydrogels are examined. The maximum energy recovery from 0.4 g of hydrogel in feed (calculated based on dry form) of 102 mJ/kg was obtained by a hydrogel with a 3% cross-linking density, a 200-300 µm particle size, and 100 g external load. Excellent reproducibility of engine cycles was achieved over 10 cycles. This concept is complementary to the osmotic engine concept based on a polyelectrolyte hydrogel. In addition, polyzwitterionic materials have become a benchmark material for preventing biofouling, and the swelling properties of such materials can be further modulated and tuned.


Subject(s)
Hydrogels , Salinity , Polymers , Reproducibility of Results , Water
12.
Molecules ; 20(2): 1941-54, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25629455

ABSTRACT

Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.


Subject(s)
Amines/chemistry , Imines/chemical synthesis , Silicates/chemistry , Titanium/chemistry , Catalysis , Green Chemistry Technology , Light , Oxidation-Reduction , Photochemical Processes
13.
J Am Chem Soc ; 137(5): 1956-66, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25607508

ABSTRACT

Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold-palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using "green" oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...