Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298880

ABSTRACT

BACKGROUND: The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.


Subject(s)
Cadmium/metabolism , Endocytosis/physiology , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Metallothionein/metabolism , Receptors, Cell Surface/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Nephrons/metabolism
2.
Int J Mol Sci ; 20(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091675

ABSTRACT

Cadmium (Cd2+) in the environment is a significant health hazard. Chronic low Cd2+ exposure mainly results from food and tobacco smoking and causes kidney damage, predominantly in the proximal tubule. Blood Cd2+ binds to thiol-containing high (e.g., albumin, transferrin) and low molecular weight proteins (e.g., the high-affinity metal-binding protein metallothionein, ß2-microglobulin, α1-microglobulin and lipocalin-2). These plasma proteins reach the glomerular filtrate and are endocytosed at the proximal tubule via the multiligand receptor complex megalin:cubilin. The current dogma of chronic Cd2+ nephrotoxicity claims that Cd2+-metallothionein endocytosed via megalin:cubilin causes renal damage. However, a thorough study of the literature strongly argues for revision of this model for various reasons, mainly: (i) It relied on studies with unusually high Cd2+-metallothionein concentrations; (ii) the KD of megalin for metallothionein is ~105-times higher than (Cd2+)-metallothionein plasma concentrations. Here we investigated the uptake and toxicity of ultrafiltrated Cd2+-binding protein ligands that are endocytosed via megalin:cubilin in the proximal tubule. Metallothionein, ß2-microglobulin, α1-microglobulin, lipocalin-2, albumin and transferrin were investigated, both as apo- and Cd2+-protein complexes, in a rat proximal tubule cell line (WKPT-0293 Cl.2) expressing megalin:cubilin at low passage, but is lost at high passage. Uptake was determined by fluorescence microscopy and toxicity by MTT cell viability assay. Apo-proteins in low and high passage cells as well as Cd2+-protein complexes in megalin:cubilin deficient high passage cells did not affect cell viability. The data prove Cd2+-metallothionein is not toxic, even at >100-fold physiological metallothionein concentrations in the primary filtrate. Rather, Cd2+-ß2-microglobulin, Cd2+-albumin and Cd2+-lipocalin-2 at concentrations present in the primary filtrate are taken up by low passage proximal tubule cells and cause toxicity. They are therefore likely candidates of Cd2+-protein complexes damaging the proximal tubule via megalin:cubilin at concentrations found in the ultrafiltrate.


Subject(s)
Albumins/metabolism , Cadmium/toxicity , Kidney Tubules, Proximal/drug effects , Lipocalin-2/metabolism , beta 2-Microglobulin/metabolism , Animals , Cadmium/pharmacology , Cadmium Poisoning , Cell Line , Kidney Tubules, Proximal/cytology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Metallothionein/metabolism , Protein Binding , Rats , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...