Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; : e2300087, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059892

ABSTRACT

The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1ß. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.

2.
Proteomics ; : e2300269, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991474

ABSTRACT

Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.

3.
Microbiol Spectr ; : e0517922, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36946779

ABSTRACT

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria package various cargo, including DNA that can be transferred to other bacteria or to host cells. OMV-associated DNA has been implicated in mediating horizontal gene transfer (HGT) between bacteria, which includes the dissemination of antibiotic resistance genes within and between bacterial species. Despite the known ability of OMVs to mediate HGT, the mechanisms of DNA packaging into OMVs remain poorly characterized, as does the effect of bacterial growth conditions on the DNA cargo composition of OMVs and their subsequent abilities to mediate HGT. In this study, we examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions. Analysis of planktonic growth-derived OMVs revealed their ability to package and protect plasmid DNA from DNase degradation and to transfer plasmid-encoded antibiotic resistance genes to recipient, antibiotic-sensitive P. aeruginosa bacteria at a greater efficiency than transformation with plasmid alone. Comparisons of planktonic and biofilm-derived P. aeruginosa OMVs demonstrated that biofilm-derived OMVs were smaller but were associated with more plasmid DNA than planktonic-derived OMVs. Additionally, biofilm-derived P. aeruginosa OMVs were more efficient in the transformation of competent P. aeruginosa bacteria, compared to transformations with an equivalent number of planktonic-derived OMVs. The findings of this study highlight the importance of bacterial growth conditions for the packaging of DNA within P. aeruginosa OMVs and their ability to facilitate HGT, thus contributing to the spread of antibiotic resistance genes between P. aeruginosa bacteria. IMPORTANCE Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. Here, we reveal that P. aeruginosa planktonic and biofilm-derived OMVs can deliver plasmid-encoded antibiotic resistance to recipient P. aeruginosa. Additionally, we demonstrated that P. aeruginosa biofilm-derived OMVs were associated with more plasmid DNA compared to planktonic-derived OMVs and were more efficient in the transfer of plasmid DNA to recipient bacteria. Overall, this demonstrated the ability of P. aeruginosa OMVs to facilitate the dissemination of antibiotic resistance genes, thereby enabling the survival of susceptible bacteria during antibiotic treatment. Investigating the roles of biofilm-derived BMVs may contribute to furthering our understanding of the role of BMVs in HGT and the spread of antibiotic resistance in the environment.

4.
Proteomics ; 23(10): e2200464, 2023 05.
Article in English | MEDLINE | ID: mdl-36781972

ABSTRACT

Gram-negative bacteria produce outer membrane vesicles (OMVs) and contain bacterial cargo including nucleic acids and proteins. The proteome of OMVs can be altered by various factors including bacterial growth stage, growth conditions, and environmental factors. However, it is currently unknown if the mechanism of OMV biogenesis can determine their proteome. In this study, we examined whether the mechanisms of OMV biogenesis influenced the production and protein composition of Pseudomonas aeruginosa OMVs. OMVs were isolated from three P. aeruginosa strains that produced OMVs either by budding alone, by explosive cell lysis, or by both budding and explosive cell lysis. We identified that the mechanism of OMV biogenesis dictated OMV quantity. Furthermore, a global proteomic analysis comparing the proteome of OMVs to their parent bacteria showed significant differences in the identification of proteins in bacteria and OMVs. Finally, we determined that the mechanism of OMV biogenesis influenced the protein composition of OMVs, as OMVs released by distinct mechanisms of biogenesis differed significantly from one another in their proteome and functional enrichment analysis. Overall, our findings reveal that the mechanism of OMV biogenesis is a main factor that determines the OMV proteome which may affect their subsequent biological functions.


Subject(s)
Exosomes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Proteome/metabolism , Proteomics , Exosomes/metabolism , Gram-Negative Bacteria/metabolism , Bacterial Outer Membrane Proteins/metabolism
5.
Front Immunol ; 13: 970725, 2022.
Article in English | MEDLINE | ID: mdl-36304461

ABSTRACT

The release of bacterial membrane vesicles (BMVs) has become recognized as a key mechanism used by both pathogenic and commensal bacteria to activate innate immune responses in the host and mediate immunity. Outer membrane vesicles (OMVs) produced by Gram-negative bacteria can harbor various immunogenic cargo that includes proteins, nucleic acids and peptidoglycan, and the composition of OMVs strongly influences their ability to activate host innate immune receptors. Although various Gram-negative pathogens can produce OMVs that are enriched in immunogenic cargo compared to their parent bacteria, the ability of OMVs produced by commensal organisms to be enriched with immunostimulatory contents is only recently becoming known. In this study, we investigated the cargo associated with OMVs produced by the intestinal commensal Bacteroides fragilis and determined their ability to activate host innate immune receptors. Analysis of B. fragilis OMVs revealed that they packaged various biological cargo including proteins, DNA, RNA, lipopolysaccharides (LPS) and peptidoglycan, and that this cargo could be enriched in OMVs compared to their parent bacteria. We visualized the entry of B. fragilis OMVs into intestinal epithelial cells, in addition to the ability of B. fragilis OMVs to transport bacterial RNA and peptidoglycan cargo into Caco-2 epithelial cells. Using HEK-Blue reporter cell lines, we identified that B. fragilis OMVs could activate host Toll-like receptors (TLR)-2, TLR4, TLR7 and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), whereas B. fragilis bacteria could only induce the activation of TLR2. Overall, our data demonstrates that B. fragilis OMVs activate a broader range of host innate immune receptors compared to their parent bacteria due to their enrichment of biological cargo and their ability to transport this cargo directly into host epithelial cells. These findings indicate that the secretion of OMVs by B. fragilis may facilitate immune crosstalk with host epithelial cells at the gastrointestinal surface and suggests that OMVs produced by commensal bacteria may preferentially activate host innate immune receptors at the mucosal gastrointestinal tract.


Subject(s)
Bacteroides fragilis , Peptidoglycan , Humans , Caco-2 Cells , Epithelial Cells , Immunity, Innate
6.
Microbiol Spectr ; 9(3): e0127321, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937167

ABSTRACT

Bacterial membrane vesicles (BMVs) are produced by all bacteria and facilitate a range of functions in host-microbe interactions and pathogenesis. Quantification of BMVs is a critical first step in the analysis of their biological and immunological functions. Historically, BMVs have been quantified by protein assay, which remains the preferred method of BMV quantification. However, recent studies have shown that BMV protein content can vary significantly between bacterial strains, growth conditions, and stages of bacterial growth, suggesting that protein concentration may not correlate directly with BMV quantity. Here, we show that the method used to quantify BMVs can alter experimental outcomes. We compared the enumeration of BMVs using different protein assays and nanoparticle tracking analysis (NTA). We show that different protein assays vary significantly in their quantification of BMVs and that their sensitivity varies when quantifying BMVs produced by different species. Moreover, stimulation of epithelial cells with an equivalent amount of BMV protein quantified using different protein assays resulted in significant differences in interleukin 8 (IL-8) responses. Quantification of Helicobacter pylori, Pseudomonas aeruginosa, and Staphylococcus aureus BMVs by NTA and normalization of BMV cargo to particle number revealed that BMV protein, DNA, and RNA contents were variable between strains and species and throughout bacterial growth. Differences in BMV-mediated activation of Toll-like receptors, NF-κB, and IL-8 responses were observed when stimulations were performed with equivalent BMV particle number but not equivalent protein amount. These findings reveal that the method of BMV quantification can significantly affect experimental outcomes, thereby potentially altering the observed biological functions of BMVs. IMPORTANCE Recent years have seen a surge in interest in the roles of BMVs in host-microbe interactions and interbacterial communication. As a result of such rapid growth in the field, there is a lack of uniformity in BMV enumeration. Here, we reveal that the method used to enumerate BMVs can significantly alter experimental outcomes. Specifically, standardization of BMVs by protein amount reduced the ability to distinguish strain differences in the immunological functions of BMVs. In contrast, species-, strain-, and growth stage-dependent differences in BMV cargo content were evident when BMVs were enumerated by particle number, and this was reflected in differences in their ability to induce immune responses. These findings indicate that parameters critical to BMV function, including bacterial species, strain, growth conditions, and sample purity, should form the basis of standard reporting in BMV studies. This will ultimately bring uniformity to the field to advance our understanding of BMV functions.


Subject(s)
Bacterial Proteins/analysis , Extracellular Vesicles/metabolism , Helicobacter pylori/metabolism , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/genetics , Staphylococcus aureus/metabolism , Bacterial Outer Membrane/metabolism , Cell Line , HEK293 Cells , Helicobacter pylori/genetics , Host Microbial Interactions , Humans , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/genetics
7.
Mol Immunol ; 134: 72-85, 2021 06.
Article in English | MEDLINE | ID: mdl-33725501

ABSTRACT

Bacteria release extracellular vesicles (EVs) known as bacterial membrane vesicles (BMVs) during their normal growth. Gram-negative bacteria produce BMVs termed outer membrane vesicles (OMVs) that are composed of a range of biological cargo and facilitate numerous bacterial functions, including promoting pathogenesis and mediating disease in the host. By contrast, less is understood about BMVs produced by Gram-positive bacteria, which are referred to as membrane vesicles (MVs), however their contribution to mediating bacterial pathogenesis has recently become evident. In this review, we summarise the mechanisms whereby BMVs released by Gram-negative and Gram-positive bacteria are produced, in addition to discussing their key functions in promoting bacterial survival, mediating pathogenesis and modulating host immune responses. Furthermore, we discuss the mechanisms whereby BMVs produced by both commensal and pathogenic organisms can enter host cells and interact with innate immune receptors, in addition to how they modulate host innate and adaptive immunity to promote immunotolerance or drive the onset and progression of disease. Finally, we highlight current and emerging applications of BMVs in vaccine design, biotechnology and cancer therapeutics.


Subject(s)
Bacteria/immunology , Bacterial Structures/immunology , Extracellular Vesicles/immunology , Animals , Humans
8.
Proteomics ; 19(1-2): e1800209, 2019 01.
Article in English | MEDLINE | ID: mdl-30488570

ABSTRACT

Gram-negative bacteria release outer membrane vesicles (OMVs) as part of their normal growth that contain a range of cargo from their parent bacterium, including DNA, RNA, and proteins. The protein content of OMVs is suggested to be similar in composition to various sub-cellular locations of their parent bacterium. However, very little is known regarding the effect of bacterial growth stage on the size, content, and selective packaging of proteins into OMVs. In this study, the global proteome of Helicobacter pylori and their OMVs throughout bacterial growth are examined to determine if bacterial growth stage affected OMV cargo composition. Analysis of OMVs produced by H. pylori reveals that bacterial growth stage affects the size, composition, and selection of protein cargo into OMVs. Proteomic analysis identifies that the proteome of H. pylori OMVs is vastly different throughout bacterial growth and that OMVs contain a range of proteins compared to their parent bacteria. In addition, bacterial growth stage affects the ability of OMVs to induce the production of IL-8 by human epithelial cells. Therefore, the findings identify that the size, proteome, and immunogenicity of OMVs produced during various stages of bacterial growth is not comparable. Collectively, these findings highlight the importance of considering the bacterial growth stage from which OMVs are isolated, as this will impact their size, protein composition, and ultimately their biological functions.


Subject(s)
Extracellular Vesicles/metabolism , Helicobacter pylori/metabolism , Proteome/metabolism , Proteomics/methods , Bacterial Outer Membrane Proteins/metabolism , Gram-Negative Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...