Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 248: 115983, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38163399

ABSTRACT

The inability to objectively quantify cognitive stress in real-time with wearable devices is a crucial unsolved problem with serious negative consequences for dementia and mental disability patients and those seeking to improve their quality of life. Here, we introduce a skin-like, wireless sternal patch that captures changes in cardiac mechanics due to stress manifesting in the seismocardiogram (SCG) signals. Judicious optimization of the device's micro-structured interconnections and elastomer integration yields a device that sufficiently matches the skin's mechanics, robustly yet gently adheres to the skin without aggressive tapes, and captures planar and longitudinal SCG waves well. The device transmits SCG beats in real-time to a user's device, where derived features relate to the heartbeat's mechanical morphology. The signals are assessed by a series of features in a support vector machine regressor. Controlled studies, compared to gold standard cortisol and following the validated imaging test, show an R-squared correlation of 0.79 between the stress prediction and cortisol change, significantly improving over prior works. Likewise, the system demonstrates excellent robustness to external temperature and physical recovery status while showing excellent accuracy and wearability in full-day use.


Subject(s)
Biosensing Techniques , Hydrocortisone , Humans , Quality of Life , Heart , Cognition
2.
iScience ; 26(3): 106184, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36879814

ABSTRACT

Vasoconstriction is a crucial physiological process that serves as the body's primary blood pressure regulation mechanism and a key marker of numerous harmful health conditions. The ability to detect vasoconstriction in real time would be crucial for detecting blood pressure, identifying sympathetic arousals, characterizing patient wellbeing, detecting sickle cell anemia attacks early, and identifying complications caused by hypertension medications. However, vasoconstriction manifests weakly in traditional photoplethysmogram (PPG) measurement locations, like the finger, toe, and ear. Here, we report a wireless, fully integrated, soft sternal patch to capture PPG signals from the sternum, an anatomical region that exhibits a robust vasoconstrictive response. With healthy controls, the device is highly capable of detecting vasoconstriction induced endogenously and exogenously. Furthermore, in overnight trials with patients with sleep apnea, the device shows a high agreement (r2 = 0.74) in vasoconstriction detection with a commercial system, demonstrating its potential use in portable, continuous, long-term vasoconstriction monitoring.

3.
ACS Appl Mater Interfaces ; 15(1): 2092-2103, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36594669

ABSTRACT

Recent advances in soft materials and nano-microfabrication have enabled the development of flexible wearable electronics. At the same time, printing technologies have been demonstrated to be efficient and compatible with polymeric materials for manufacturing wearable electronics. However, wearable device manufacturing still counts on a costly, complex, multistep, and error-prone cleanroom process. Here, we present fully screen-printable, skin-conformal electrodes for low-cost and scalable manufacturing of wearable electronics. The screen printing of the polyimide (PI) layer enables facile, low-cost, scalable, high-throughput manufacturing. PI mixed with poly(ethylene glycol) exhibits a shear-thinning behavior, significantly improving the printability of PI. The premixed Ag/AgCl ink is then used for conductive layer printing. The serpentine pattern of the screen-printed electrode accommodates natural deformation under stretching (30%) and bending conditions (180°), which are verified by computational and experimental studies. Real-time wireless electrocardiogram monitoring is also successfully demonstrated using the printed electrodes with a flexible printed circuit. The algorithm developed in this study can calculate accurate heart rates, respiratory rates, and heart rate variability metrics for arrhythmia detection.


Subject(s)
Wearable Electronic Devices , Electronics , Polymers , Electrodes , Polyethylene Glycols
4.
Sci Adv ; 8(21): eabo5867, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613271

ABSTRACT

Modern auscultation, using digital stethoscopes, provides a better solution than conventional methods in sound recording and visualization. However, current digital stethoscopes are too bulky and nonconformal to the skin for continuous auscultation. Moreover, motion artifacts from the rigidity cause friction noise, leading to inaccurate diagnoses. Here, we report a class of technologies that offers real-time, wireless, continuous auscultation using a soft wearable system as a quantitative disease diagnosis tool for various diseases. The soft device can detect continuous cardiopulmonary sounds with minimal noise and classify real-time signal abnormalities. A clinical study with multiple patients and control subjects captures the unique advantage of the wearable auscultation method with embedded machine learning for automated diagnoses of four types of lung diseases: crackle, wheeze, stridor, and rhonchi, with a 95% accuracy. The soft system also demonstrates the potential for a sleep study by detecting disordered breathing for home sleep and apnea detection.

5.
Adv Healthc Mater ; 11(13): e2200170, 2022 07.
Article in English | MEDLINE | ID: mdl-35306761

ABSTRACT

Hotter summers caused by global warming and increased workload and duration are endangering the health of farmworkers, a high-risk population for heat-related illness (HRI), and deaths. Although prior studies using wearable sensors show the feasibility of employing field-collected data for HRI monitoring, existing devices still have limitations, such as data loss from motion artifacts, device discomfort from rigid electronics, difficulties with administering ingestible sensors, and low temporal resolution. Here, this paper introduces a wireless, wearable bioelectronic system with functionalities for continuous monitoring of skin temperature, electrocardiograms (ECG), heart rates (HR), and activities, configured in a single integrated package. Advanced nanomanufacturing based on laser machining allows rapid device fabrication and direct incorporation of sensors with a highly breathable substrate, allowing for managing excessive sweating and multimodal stresses. To validate the device's performance in agricultural settings, the device is applied to multiple farmworkers at various operations, including fernery, nursery, and crop. The accurate data recording, including high-fidelity ECG (signal-to-noise ratio: >20 dB), accurate HR (r = 0.89, r2 = 0.65 in linear correlation), and reliable temperature/activity, confirms the device's capability for multiparameter health monitoring of farmworkers.


Subject(s)
Farmers , Wearable Electronic Devices , Electronics , Heart Rate , Hot Temperature , Humans , Wireless Technology
6.
Materials (Basel) ; 15(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35160670

ABSTRACT

Arrhythmias are one of the leading causes of death in the United States, and their early detection is essential for patient wellness. However, traditional arrhythmia diagnosis by expert evaluation from intermittent clinical examinations is time-consuming and often lacks quantitative data. Modern wearable sensors and machine learning algorithms have attempted to alleviate this problem by providing continuous monitoring and real-time arrhythmia detection. However, current devices are still largely limited by the fundamental mismatch between skin and sensor, giving way to motion artifacts. Additionally, the desirable qualities of flexibility, robustness, breathability, adhesiveness, stretchability, and durability cannot all be met at once. Flexible sensors have improved upon the current clinical arrhythmia detection methods by following the topography of skin and reducing the natural interface mismatch between cardiac monitoring sensors and human skin. Flexible bioelectric, optoelectronic, ultrasonic, and mechanoelectrical sensors have been demonstrated to provide essential information about heart-rate variability, which is crucial in detecting and classifying arrhythmias. In this review, we analyze the current trends in flexible wearable sensors for cardiac monitoring and the efficacy of these devices for arrhythmia detection.

7.
Sci Adv ; 7(52): eabl4146, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936438

ABSTRACT

Obstructive sleep apnea (OSA) affects more than 900 million adults globally and can create serious health complications when untreated; however, 80% of cases remain undiagnosed. Critically, current diagnostic techniques are fundamentally limited by low throughputs and high failure rates. Here, we report a wireless, fully integrated, soft patch with skin-like mechanics optimized through analytical and computational studies to capture seismocardiograms, electrocardiograms, and photoplethysmograms from the sternum, allowing clinicians to investigate the cardiovascular response to OSA during home sleep tests. In preliminary trials with symptomatic and control subjects, the soft device demonstrated excellent ability to detect blood-oxygen saturation, respiratory effort, respiration rate, heart rate, cardiac pre-ejection period and ejection timing, aortic opening mechanics, heart rate variability, and sleep staging. Last, machine learning is used to autodetect apneas and hypopneas with 100% sensitivity and 95% precision in preliminary at-home trials with symptomatic patients, compared to data scored by professionally certified sleep clinicians.

8.
Materials (Basel) ; 14(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072779

ABSTRACT

Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.

9.
ACS Omega ; 6(14): 9344-9351, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869914

ABSTRACT

Stretchable electronics have demonstrated tremendous potential in wearable healthcare, advanced diagnostics, soft robotics, and persistent human-machine interfaces. Still, their applicability is limited by a reliance on low-throughput, high-cost fabrication methods. Traditional MEMS/NEMS metallization and off-contact direct-printing methods are not suitable at scale. In contrast, screen printing is a high-throughput, mature printing method. The recent development of conductive nanomaterial inks that are intrinsically stretchable provides an exciting opportunity for scalable fabrication of stretchable electronics. The design of screen-printed inks is constrained by strict rheological requirements during printing, substrate-ink attraction, and nanomaterial properties that determine dispersibility and percolation threshold. Here, this review provides a concise overview of these key constraints and a recent attempt to meet them. We begin with a description of the fluid dynamics governing screen printing, deduce from these properties the optimal ink rheological properties, and then describe how nanomaterials, solvents, binders, and rheological agents are combined to produce high-performing inks. Although this review emphasizes conductive interconnections, these methods are highly applicable to sensing, insulating, photovoltaic, and semiconducting materials. Finally, we conclude with a discussion on the future opportunities and challenges in screen-printing stretchable electronics and their broader applicability.

10.
ACS Appl Mater Interfaces ; 12(39): 43388-43397, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32791828

ABSTRACT

Sensors that can detect external stimuli and perceive the surrounding areas could offer an ability for soft biomimetic robots to use the sensory feedback for closed-loop control of locomotion. Although various types of biomimetic robots have been developed, few systems have included integrated stretchable sensors and interconnectors with miniaturized electronics. Here, we introduce a soft, stretchable nanocomposite system with built-in wireless electronics with an aim for feedback-loop motion control of a robotic earthworm. The nanostructured strain sensor, based on a carbon nanomaterial and a low-modulus silicone elastomer, allows for seamless integration with the body of the soft robot that can accommodate large strains caused by bending, stretching, and physical interactions with obstacles. A scalable, cost-effective, and screen-printing method manufactures an array of the strain sensors that are conductive and stretchable over 100% with a gauge factor over 38. An array of nanomembrane interconnectors enables a reliable connection between soft sensors and wireless electronics while tolerating the robot's multimodal movements. A set of computational and experimental studies of soft materials, stretchable mechanics, and hybrid packaging provides the key design factors for a reliable, nanocomposite sensor system. The miniaturized wireless circuit, embedded in the robot joint, offers real-time monitoring of strain changes during the motions of a robotic segment. Collectively, the soft sensor system presented in this work shows great potential to be integrated with other flexible, stretchable electronics for applications in soft robotics, wearable devices, and human-machine interfaces.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Robotics , Wearable Electronic Devices , Locomotion , Particle Size , Surface Properties
11.
Adv Sci (Weinh) ; 7(15): 2000810, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32775164

ABSTRACT

Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully-integrated, stretchable, wireless skin-conformal bioelectronic (referred to as "SKINTRONICS") is introduced here that integrates soft, multi-layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all-in-one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long-term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real-world applicable stress monitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...