Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dokl Biochem Biophys ; 516(1): 111-114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795244

ABSTRACT

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.


Subject(s)
Carcinoma, Ehrlich Tumor , Gold , Metal Nanoparticles , Proton Therapy , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Proton Therapy/methods , Animals , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Mice , Cell Line, Tumor , Polyethylene Glycols/chemistry
2.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730109

ABSTRACT

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Subject(s)
Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
3.
Bull Exp Biol Med ; 176(4): 501-504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491259

ABSTRACT

High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929. The survival of L929 cells decreased linearly with increasing the concentration of Bi NP in a concentration range of 3-500 µg/ml; the LC50 value was 57 µg/ml. The unique combination of functional properties and moderate toxicity of the laser-synthesized Bi NP makes them a new promising platform for sensitization of multimodal cancer theranostics.


Subject(s)
Metal Nanoparticles , Animals , Mice , Bismuth/toxicity , Bismuth/chemistry , Cell Line, Tumor , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Nanostructures , Neoplasms/metabolism , Phototherapy/methods
4.
Bull Exp Biol Med ; 168(6): 777-780, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32333308

ABSTRACT

We investigate biodistribution of gallium-labeled hydroxyethylidenediphosphonic acid (68Ga-HEDP) and diethylenetriaminepentakis(methylenephosphonic acid) (68Ga-DTPMP) in intact Wistar rats. It was shown that 68Ga-DTPMP accumulated mainly in the bone tissue providing high femur/blood and femur/muscle ratios and had high stability in vivo. In contrast, 68Ga-HEDP was characterized by low stability and high uptake of radioactivity in blood throughout the study. So 68Ga-DTPMP can be considered as a new prospective radiotracer in oncology for imaging bone tissue metastasis by positron emission tomography.


Subject(s)
Etidronic Acid/pharmacokinetics , Femur/diagnostic imaging , Gallium Radioisotopes/pharmacokinetics , Phosphorous Acids/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Biological Availability , Etidronic Acid/blood , Female , Gallium Radioisotopes/blood , Organ Specificity , Phosphorous Acids/blood , Positron-Emission Tomography/methods , Radiopharmaceuticals/blood , Rats , Rats, Wistar , Tissue Distribution
5.
Sci Rep ; 9(1): 2017, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765778

ABSTRACT

Nuclear nanomedicine, with its targeting ability and heavily loading capacity, along with its enhanced retention to avoid rapid clearance as faced with molecular radiopharmaceuticals, provides unique opportunities to treat tumors and metastasis. Despite these promises, this field has seen limited activities, primarily because of a lack of suitable nanocarriers, which are safe, excretable and have favorable pharmacokinetics to efficiently deliver and retain radionuclides in a tumor. Here, we introduce biodegradable laser-synthesized Si nanoparticles having round shape, controllable low-dispersion size, and being free of any toxic impurities, as highly suitable carriers of therapeutic 188Re radionuclide. The conjugation of the polyethylene glycol-coated Si nanoparticles with radioactive 188Re takes merely 1 hour, compared to its half-life of 17 hours. When intravenously administered in a Wistar rat model, the conjugates demonstrate free circulation in the blood stream to reach all organs and target tumors, which is radically in contrast with that of the 188Re salt that mostly accumulates in the thyroid gland. We also show that the nanoparticles ensure excellent retention of 188Re in tumor, not possible with the salt, which enables one to maximize the therapeutic effect, as well as exhibit a complete time-delayed conjugate bioelimination. Finally, our tests on rat survival demonstrate excellent therapeutic effect (72% survival compared to 0% of the control group). Combined with a series of imaging and therapeutic functionalities based on unique intrinsic properties of Si nanoparticles, the proposed biodegradable complex promises a major advancement in nuclear nanomedicine.


Subject(s)
Drug Carriers/chemistry , Nanomedicine , Nanoparticles/chemistry , Radioisotopes/chemistry , Radioisotopes/therapeutic use , Rhenium/chemistry , Rhenium/therapeutic use , Safety , Silicon/chemistry , Cell Line, Tumor , Humans , Nuclear Medicine , Polyethylene Glycols/chemistry , Radioisotopes/pharmacokinetics , Rhenium/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...