Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 10(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667964

ABSTRACT

Vascular catheter-related infections, primarily caused by Candida albicans and Candida parapsilosis, pose significant challenges due to the formation of biofilms on catheters, leading to refractory disease and considerable morbidity. We studied the efficacy of micafungin in systemic and lock therapies to eliminate catheter-based biofilms and deep tissue infections in experimental central venous catheter (CVC)-related candidemia in neutropenic rabbits. Silastic CVCs in rabbits were inoculated with 1 × 103 CFU/mL of C. albicans or C. parapsilosis, establishing catheter-based biofilm, and subjected to various treatments. Neutropenic rabbits treated with a combination of lock therapy and systemic micafungin demonstrated the most significant reduction in fungal burden, from 5.0 × 104 to 1.8 × 102 CFU/mL of C. albicans and from 5.9 × 104 to 2.7 × 102 CFU/mL of C. parapsilosis (p ≤ 0.001), in the CVC after 24 h, with full clearance of blood cultures after 72 h from treatment initiation. The combination of lock and systemic micafungin therapy achieved eradication of C. albicans from all studied tissues (0.0 ± 0.0 log CFU/g) vs. untreated controls (liver 7.5 ± 0.22, spleen 8.3 ± 0.25, kidney 8.6 ± 0.07, cerebrum 6.3 ± 0.31, vena cava 6.6 ± 0.29, and CVC wash 2.3 ± 0.68 log CFU/g) (p ≤ 0.001). Rabbits treated with a combination of lock and systemic micafungin therapy demonstrated a ≥2 log reduction in C. parapsilosis in all treated tissues (p ≤ 0.05) except kidney. Serum (1→3)-ß-D-glucan levels demonstrated significant decreases in response to treatment. The study demonstrates that combining systemic and lock therapies with micafungin effectively eradicates catheter-based biofilms and infections caused by C. albicans or C. parapsilosis, particularly in persistently neutropenic conditions, offering promising implications for managing vascular catheter-related candidemia and providing clinical benefits in cases where catheter removal is not feasible.

3.
Article in English | MEDLINE | ID: mdl-28696236

ABSTRACT

Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in immunocompromised patients. We hypothesized that simultaneous inhibition of biosynthesis of ergosterol in the fungal cell membrane and (1→3)-ß-d-glucan in the cell wall, respectively, by the antifungal triazole isavuconazole (ISA) and the echinocandin micafungin (MFG) may result in improved outcomes in experimental IPA in persistently neutropenic rabbits. Treatments included ISA at 20 mg/kg of body weight/day (ISA20), 40 mg/kg/day (ISA40), and 60 mg/kg/day (ISA60); MFG at 2 mg/kg/day (MFG2); combinations of ISA20 and MFG2, ISA40 and MFG2, and ISA60 and MFG2; and no treatment (untreated controls [UC]). The galactomannan index (GMI) and (1→3)-ß-d-glucan levels in serum were measured. The residual fungal burden (number of CFU per gram) was significantly reduced in ISA20-, ISA40-, ISA60-, ISA20-MFG2-, ISA40-MFG2-, and ISA60-MFG2-treated rabbits compared with that in MFG2-treated or UC rabbits (P < 0.01). Measures of organism-mediated pulmonary injury, lung weights, and pulmonary infarct score were lower in ISA40-MFG2-treated rabbits than in rabbits treated with ISA40 or MFG2 alone (P < 0.01). Survival was prolonged in ISA40-MFG2-treated rabbits in comparison to those treated with ISA40 or MFG2 alone (P < 0.01). These outcome variables correlated directly with significant declines in GMI and serum (1→3)-ß-d-glucan levels during therapy. The GMI correlated with measures of organism-mediated pulmonary injury, lung weights (r = 0.764; P < 0.001), and pulmonary infarct score (r = 0.911; P < 0.001). In summary, rabbits receiving combination therapy with isavuconazole and micafungin demonstrated a significant dose-dependent reduction in the residual fungal burden, decreased pulmonary injury, prolonged survival, a lower GMI, and lower serum (1→3)-ß-d-glucan levels in comparison to rabbits receiving isavuconazole or micafungin as a single agent.


Subject(s)
Antifungal Agents/pharmacology , Echinocandins/pharmacology , Invasive Pulmonary Aspergillosis/drug therapy , Lipopeptides/pharmacology , Nitriles/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , Animals , Combined Modality Therapy/methods , Female , Galactose/analogs & derivatives , Glucans/metabolism , Lung/microbiology , Mannans/metabolism , Micafungin , Rabbits
4.
Med Mycol ; 55(8): 859-868, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28204571

ABSTRACT

Combination therapy may be an alternative therapeutic approach for difficult-to-treat Candida infections with the aim of increasing efficacy of antifungal therapy. Whether isavuconazole, an extended-spectrum triazole, possesses synergistic activity in combination therapy with echinocandins or polyenes for the treatment of invasive candidiasis has not been studied. We used Bliss independence drug interaction analysis and time-kill assays to examine the in vitro interactions of isavuconazole with amphotericin B or micafungin, an echinocandin, against strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Candida krusei. The Bliss independence-based drug interactions modeling showed that the combination of isavuconazole and micafungin resulted in synergistic interactions against C. albicans, C. parapsilosis, and C. krusei. The degree of synergy ranged from 1.8% to 16.7% (mean %ΔΕ value) with the highest synergy occurring against C. albicans (⊙SYN% = 8.8%-110%). Time-kill assays showed that the isavuconazole-micafungin combination demonstrated concentration-depended synergy against C. albicans and C. parapsilosis. The combined interaction by Bliss analysis between isavuconazole and amphotericin B was indifferent for C. albicans, C. parapsilosis, and C. tropicalis while for C. glabrata was antagonistic (-2% to -6%) and C. krusei synergistic (3.4% to 7%). The combination of isavuconazole-amphotericin B by time-kill assay was antagonistic against C. krusei and C. glabrata. Collectively, our findings demonstrate that combinations of isavuconazole and micafungin are synergistic against Candida spp., while those of isavuconazole and amphotericin B are indifferent in vitro.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Echinocandins/pharmacology , Lipopeptides/pharmacology , Nitriles/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , Candidiasis, Invasive/drug therapy , Drug Synergism , In Vitro Techniques , Micafungin , Microbial Sensitivity Tests , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...