Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(9): e46152, 2012.
Article in English | MEDLINE | ID: mdl-23029419

ABSTRACT

Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.


Subject(s)
Genome, Human , Genomic Structural Variation , Mutation , Neoplasms/genetics , Open Reading Frames , Sequence Analysis, DNA/methods , Algorithms , Cell Line, Tumor , Chromosome Mapping , DNA Copy Number Variations , Genomic Library , Humans , Mutagenesis, Insertional
2.
Genome Res ; 21(5): 665-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21467267

ABSTRACT

Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA-PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers.


Subject(s)
Base Pairing/genetics , Breast Neoplasms/genetics , Chromosome Mapping/methods , Genome, Human/genetics , Genomic Structural Variation/genetics , Stomach Neoplasms/genetics , Cell Line, Tumor , Computational Biology , DNA/genetics , Female , Gene Rearrangement , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...