Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 23(3): 929-938, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38225219

ABSTRACT

Mass spectrometry (MS) is a valuable tool for plasma proteome profiling and disease biomarker discovery. However, wide-ranging plasma protein concentrations, along with technical and biological variabilities, present significant challenges for deep and reproducible protein quantitation. Here, we evaluated the qualitative and quantitative performance of timsTOF HT and timsTOF Pro 2 mass spectrometers for analysis of neat plasma samples (unfractionated) and plasma samples processed using the Proteograph Product Suite (Proteograph) that enables robust deep proteomics sampling prior to mass spectrometry. Samples were evaluated across a wide range of peptide loading masses and liquid chromatography (LC) gradients. We observed up to a 76% increase in total plasma peptide precursors identified and a >2-fold boost in quantifiable plasma peptide precursors (CV < 20%) with timsTOF HT compared to Pro 2. Additionally, approximately 4.5 fold more plasma peptide precursors were detected by both timsTOF HT and timsTOF Pro 2 in the Proteograph analyzed plasma vs neat plasma. In an exploratory analysis of 20 late-stage lung cancer and 20 control plasma samples with the Proteograph, which were expected to exhibit distinct proteomes, an approximate 50% increase in total and statistically significant plasma peptide precursors (q < 0.05) was observed with timsTOF HT compared to Pro 2. Our data demonstrate the superior performance of timsTOF HT for identifying and quantifying differences between biologically diverse samples, allowing for improved disease biomarker discovery in large cohort studies. Moreover, researchers can leverage data sets from this study to optimize their liquid chromatography-mass spectrometry (LC-MS) workflows for plasma protein profiling and biomarker discovery. (ProteomeXchange identifier: PXD047854 and PXD047839).


Subject(s)
Blood Proteins , Proteome , Humans , Reproducibility of Results , Peptides , Biomarkers
2.
J Clin Med ; 9(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707779

ABSTRACT

In this clinical validation study, we developed and validated a urinary Q-Score generated from the quantitative test QSant, formerly known as QiSant, for the detection of biopsy-confirmed acute rejection in kidney transplants. Using a cohort of 223 distinct urine samples collected from three independent sites and from both adult and pediatric renal transplant patients, we examined the diagnostic utility of the urinary Q-Score for detection of acute rejection in renal allografts. Statistical models based upon the measurements of the six QSant biomarkers (cell-free DNA, methylated-cell-free DNA, clusterin, CXCL10, creatinine, and total protein) generated a renal transplant Q-Score that reliably differentiated stable allografts from acute rejections in both adult and pediatric renal transplant patients. The composite Q-Score was able to detect both T cell-mediated rejection and antibody-mediated rejection patients and differentiate them from stable non-rejecting patients with a receiver-operator characteristic curve area under the curve of 99.8% and an accuracy of 98.2%. Q-Scores < 32 indicated the absence of active rejection and Q-Scores ≥ 32 indicated an increased risk of active rejection. At the Q-Score cutoff of 32, the overall sensitivity was 95.8% and specificity was 99.3%. At a prevalence of 25%, positive and negative predictive values for active rejection were 98.0% and 98.6%, respectively. The Q-Score also detected subclinical rejection in patients without an elevated serum creatinine level but identified by a protocol biopsy. This study confirms that QSant is an accurate and quantitative measurement suitable for routine monitoring of renal allograft status.

3.
Biochem Cell Biol ; 87(3): 541-4, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19448747

ABSTRACT

Urea is the major nitrogenous end product of protein metabolism in mammals. Here, we describe a quantitative, sensitive method for urea determination using a modified Jung reagent. This assay is specific for urea and is unaffected by ammonia, a common interferent in tissue and cell cultures. We demonstrate that this convenient colorimetric microplate-based, room temperature assay can be applied to determine urea synthesis in cell culture.


Subject(s)
Culture Media/chemistry , Urea/analysis , Animals , Calibration , Plasmodium falciparum/cytology , Reference Standards , Urea/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...