Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 139(5): 613-29, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22348596

ABSTRACT

In this study we assessed three technologies for silencing gene expression by RNA interference (RNAi) in the sheep parasitic nematode Haemonchus contortus. We chose as targets five genes that are essential in Caenorhabditis elegans (mitr-1, pat-12, vha-19, glf-1 and noah-1), orthologues of which are present and expressed in H. contortus, plus four genes previously tested by RNAi in H. contortus (ubiquitin, tubulin, paramyosin, tropomyosin). To introduce double-stranded RNA (dsRNA) into the nematodes we tested (1) feeding free-living stages of H. contortus with Escherichia coli that express dsRNA targetting the test genes; (2) electroporation of dsRNA into H. contortus eggs or larvae; and (3) soaking adult H. contortus in dsRNA. For each gene tested we observed reduced levels of mRNA in the treated nematodes, except for some electroporation conditions. We did not observe any phenotypic changes in the worms in the electroporation or dsRNA soaking experiments. The feeding method, however, elicited observable changes in the development and viability of larvae for five of the eight genes tested, including the 'essential' genes, Hc-pat-12, Hc-vha-19 and Hc-glf-1. We recommend the E. coli feeding method for RNAi in H. contortus and provide recommendations for future research directions for RNAi in this species.


Subject(s)
Gene Silencing , Genes, Essential/genetics , Genes, Helminth/genetics , Haemonchus/genetics , RNA Interference , Animals , Caenorhabditis elegans/genetics , Gene Transfer Techniques , Life Cycle Stages/genetics
2.
Mol Biol Cell ; 12(8): 2364-77, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11514622

ABSTRACT

The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites.


Subject(s)
Endoplasmic Reticulum/enzymology , Glycosylphosphatidylinositols/metabolism , Leishmania mexicana/enzymology , Leishmania mexicana/ultrastructure , Lysosomes/enzymology , Mannosyltransferases/metabolism , Protein Transport/physiology , Animals , Cell Fractionation , Coloring Agents/metabolism , Humans , Hydrogen-Ion Concentration , Immunoblotting , Immunohistochemistry , Leishmania mexicana/physiology , Lysosomes/metabolism , Mannosyltransferases/genetics , Microscopy, Confocal , Microtubules/metabolism , Microtubules/ultrastructure , Recombinant Fusion Proteins/metabolism , Subcellular Fractions/metabolism
3.
Mol Biol Cell ; 11(4): 1183-95, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10749923

ABSTRACT

The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do not express detectable levels of GPI-anchored proteins and accumulate two putative protein-anchor precursors. However, the synthesis and cellular levels of other non-protein-linked GPIs, including lipophosphoglycan and a major class of free GPIs, are not affected in the DeltaGPI8 mutant. Significantly, the DeltaGPI8 mutant displays normal growth in liquid culture, is capable of differentiating into replicating amastigotes within macrophages in vitro, and is infective to mice. These data suggest that GPI-anchored surface proteins are not essential to L. mexicana for its entry into and survival within mammalian host cells in vitro or in vivo and provide further support for the notion that free GPIs are essential for parasite growth.


Subject(s)
Acyltransferases/genetics , Cell Adhesion Molecules/genetics , Glycosylphosphatidylinositols/metabolism , Leishmania mexicana/genetics , Acyltransferases/isolation & purification , Acyltransferases/metabolism , Amino Acid Sequence , Animals , Blotting, Southern , Blotting, Western , Catalytic Domain , Cell Adhesion Molecules/isolation & purification , Cell Adhesion Molecules/metabolism , Cloning, Molecular , In Vitro Techniques , Injections, Intraperitoneal , Leishmania mexicana/metabolism , Leishmania mexicana/pathogenicity , Macrophages, Peritoneal/parasitology , Membrane Proteins/biosynthesis , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Sequence Alignment
4.
EMBO J ; 18(10): 2746-55, 1999 May 17.
Article in English | MEDLINE | ID: mdl-10329621

ABSTRACT

The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.


Subject(s)
Glycolipids/metabolism , Glycosylphosphatidylinositols/metabolism , Leishmania mexicana/enzymology , Mannosyltransferases/genetics , Animals , Carbohydrate Sequence , Cloning, Molecular , Dolichol Monophosphate Mannose/metabolism , Gene Deletion , Gene Expression Regulation , Glycolipids/chemistry , Glycosphingolipids/metabolism , Glycosylphosphatidylinositols/biosynthesis , Leishmania mexicana/genetics , Leishmania mexicana/growth & development , Mannosyltransferases/metabolism , Molecular Sequence Data , Molecular Structure , Mutation , Restriction Mapping , Sequence Alignment
5.
J Biol Chem ; 274(10): 6678-88, 1999 Mar 05.
Article in English | MEDLINE | ID: mdl-10037765

ABSTRACT

Protozoan parasites of the genus Leishmania secrete a number of glycoproteins and mucin-like proteoglycans that appear to be important parasite virulence factors. We have previously proposed that the polypeptide backbones of these molecules are extensively modified with a complex array of phosphoglycan chains that are linked to Ser/Thr-rich domains via a common Manalpha1-PO4-Ser linkage (Ilg, T., Overath, P., Ferguson, M. A. J., Rutherford, T., Campbell, D. G., and McConville, M. J. (1994) J. Biol. Chem. 269, 24073-24081). In this study, we show that Leishmania mexicana promastigotes contain a peptide-specific mannose-1-phosphotransferase (pep-MPT) activity that adds Manalpha1-P to serine residues in a range of defined peptides. The presence and location of the Manalpha1-PO4-Ser linkage in these peptides were determined by electrospray ionization mass spectrometry and chemical and enzymatic treatments. The pep-MPT activity was solubilized in non-ionic detergents, was dependent on Mn2+, utilized GDP-Man as the mannose donor, and was expressed in all developmental stages of the parasite. The pep-MPT activity was maximal against peptides containing Ser/Thr-rich domains of the endogenous acceptors and, based on competition assays with oligosaccharide acceptors, was distinct from other leishmanial MPTs involved in the initiation and elongation of lipid-linked phosphoglycan chains. In subcellular fractionation experiments, pep-MPT was resolved from the endoplasmic reticulum marker BiP, but had an overlapping distribution with the cis-Golgi marker Rab1. Although Man-PO4 residues in the mature secreted glycoproteins are extensively modified with mannose oligosaccharides and phosphoglycan chains, similar modifications were not added to peptide-linked Man-PO4 residues in the in vitro assays. Similarly, Man-PO4 residues on endogenous polypeptide acceptors were also poorly extended, although the elongating enzymes were still active, suggesting that the pep-MPT activity and elongating enzymes may be present in separate subcellular compartments.


Subject(s)
Leishmania mexicana/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Transferases (Other Substituted Phosphate Groups) , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Mass Spectrometry , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/isolation & purification , Transferases (Other Substituted Phosphate Groups)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...