Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Colloid Interface Sci ; 329: 103187, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38788307

ABSTRACT

The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.

2.
Sci Rep ; 14(1): 10738, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730226

ABSTRACT

A drug molecule is a substance that changes an organism's mental or physical state. Every approved drug has an indication, which refers to the therapeutic use of that drug for treating a particular medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) technique, has recently demonstrated effectiveness in translating between molecules and their textual descriptions, there remains a gap in research regarding their application in facilitating the translation between drug molecules and indications (which describes the disease, condition or symptoms for which the drug is used), or vice versa. Addressing this challenge could greatly benefit the drug discovery process. The capability of generating a drug from a given indication would allow for the discovery of drugs targeting specific diseases or targets and ultimately provide patients with better treatments. In this paper, we first propose a new task, the translation between drug molecules and corresponding indications, and then test existing LLMs on this new task. Specifically, we consider nine variations of the T5 LLM and evaluate them on two public datasets obtained from ChEMBL and DrugBank. Our experiments show the early results of using LLMs for this task and provide a perspective on the state-of-the-art. We also emphasize the current limitations and discuss future work that has the potential to improve the performance on this task. The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases and significantly reduce the cost of drug discovery, with the potential to revolutionize the field of drug discovery in the era of generative AI.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Drug Discovery/methods , Pharmaceutical Preparations/chemistry
3.
Adv Colloid Interface Sci ; 317: 102916, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269558

ABSTRACT

The formation of motion-induced dynamic adsorption layers of surfactants at the surface of rising bubbles is a widely accepted phenomenon. Although their existence and formation kinetics have been theoretically postulated and confirmed in many experimental reports, the investigations primarily remain qualitative in nature. In this paper we present results that, to the best of our knowledge, provide a first quantitative proof of the influence of the dynamic adsorption layer on drainage dynamics of a single foam film formed under dynamic conditions. This is achieved by measuring the drainage dynamics of single foam films, formed by air bubbles of millimetric size colliding against the interface between n-octanol solutions and air. This was repeated for a total of five different surfactant concentrations and two different liquid column heights. All three steps preceding foam film rupture, namely the rising, bouncing and drainage steps, were sequentially examined. In particular, the morphology of the single film formed during the drainage step was analyzed considering the rising and bouncing history of the bubble. It was found that, depending on the motion-induced state of adsorption layer at the bubble surface during the rising and the bouncing steps, single foam film drainage dynamics can be spectacularly different. Using Direct Numerical Simulations (DNS), it was revealed that surfactant redistribution can occur at the bubble surface as a result of the bouncing dynamics (approach-bounce cycles), strongly affecting the interfacial mobility, and leading to slower rates of foam film drainage. Since the bouncing amplitude directly depends on the rising velocity, which correlates in turn with the adsorption layer of surfactants at the bubble surface during the rising step, it is demonstrated that the lifetime of surface bubbles should intimately be related to the history of their formation.

4.
Nanotechnol Sci Appl ; 16: 73-84, 2023.
Article in English | MEDLINE | ID: mdl-38161487

ABSTRACT

Introductions: Ink based on metallic nanoparticles has been widely used so far for the fabrication of electronic circuits and devices using printing technology. This study aimed at the analysis of the effect of the silver shell thickness of nickel@silver core@shell (Ni@Ag) nanoparticles (NPs) on the fabrication and conductive properties of deposited coatings. Methods: The process of the synthesis of Ni@Ag NPs with various silver shell thicknesses was developed. The physicochemical properties (size, stability against aggregation process) of synthesized Ni@Ag nanoparticles were analyzed. The films based on ink containing Ni@Ag NPs with different silver shell thicknesses were fabricated and sintered in a temperature range of 120-300 °C and at times from 15 to 90 min. The dependence of their conductive properties on the applied temperature and time as well as silver shell thickness was evaluated. Results: Ni NPs were coated with 10, 20, 30, 35, 45, and 55 nm silver shell thickness. The resistivity of coatings based on obtained NPs depends on the thickness of the Ag shell and the sintering temperature. After sintering at 300 °C, the highest decrease in its value (at an optimal sintering time of 60 min) from about 100 µΩ·cm to 9 µΩ·cm was observed when the thickness of the shell increased from 10 to 55 nm. At the lowest sintering temperature (120 °C) the highest conductivity (about 50% of that for bulk nickel) was obtained for films based on Ni@Ag NPs with 45 and 55 nm of the silver shell thickness. Discussions: The analysis of the resistivity of the sintered films showed that higher conductivity was obtained for the coatings formed from Ni@Ag NPs with the thicker Ag shell; moreover, thicker shells allowed a lowering of sintering temperature due to higher conductivity and a lower melting point of silver in comparison to nickel NPs.

5.
ACS Omega ; 6(28): 18289-18299, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308060

ABSTRACT

The properties of thin liquid films are usually investigated under static conditions, isolated from external disturbances. Such studies provide vital information about the drainage mechanism of the thin liquid film, but the conditions of these measurements are vastly different from those that occur when a real dispersed system is created. In this paper, we present elaborated methodologies that allow qualitative and quantitative measurements of the stability of both the emulsion and foam films formed by a single bubble and droplet at liquid/gas and liquid/liquid interfaces, where the hydrodynamic factors are of crucial importance. The experiments were performed in a bovine serum albumin (BSA) solution at different pH values. The adsorption behavior of BSA under different pH conditions at the liquid/gas and liquid/liquid interface is described, and its implication for the single bubble/droplet motion and liquid film drainage is analyzed. The mechanism of thin-liquid-film stabilization by the BSA molecules is shown to be significantly different for the foam and emulsion films and depends significantly on the bubble history as well as the pH of the BSA solution. Additionally, the results obtained for BSA were compared to those acquired for a typical surface-active substance, sodium lauryl sulfate. The similarities and differences in the rising bubble/droplet dynamics (caused by different dynamic adsorption layer architectures) and foam and emulsion film stabilization by these two types of stabilizers under dynamic conditions are shown and discussed.

6.
J Phys Chem B ; 125(15): 3855-3866, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33848150

ABSTRACT

Cationic alkyltrimethylammonium bromides (CnTAB, with n = 8, 12, 16, 18) and their mixtures with n-octanol as a nonionic surfactant were chosen as a model system to study the synergistic effect on foamability (two-phase system) and floatability (three-phase system) of quartz in the presence of binary mixtures of ionic/nonionic surfactants. The foam height of one-component solutions and binary mixtures and floatability of quartz particles were characterized as a function of the surfactant concentration and the number of carbons (n) in the alkyl chain of CnTAB. The experimental results of foamability and floatability measurements in one-component and mixed solutions revealed the synergistic effect, causing a significant enhancement in the foam height and recovery of quartz. In the presence of n-octanol, the height of foam increased remarkably for all CnTAB solutions studied, and this effect, whose magnitude depended on the CnTAB hydrophobic tail length, could not be justified by a simple increase in total surfactant concentration. A similar picture was obtained in the case of flotation response. The mechanism of synergistic effect observed in mixed CnTAB/n-octanol solutions was proposed. The discussion was supported by molecular dynamics simulations, and the probable mechanism responsible for synergism was discussed. In addition, an analysis allowing accurate determination of the concentration regimes, where the synergistic effect can be expected, was given. It was shown that for the two-phase system, the n-octanol molecule preadsorption at the liquid/gas interface causes an increase in CnTAB adsorption coverage over the level expected from its equilibrium value in the one-component solution. In the case of the three-phase system, the synergistic effect was related to the ionic surfactants serving as an anchor layer for n-octanol, which, in water/n-octanol solution (one-component system), do not adsorb on the surface of quartz.

7.
J Colloid Interface Sci ; 575: 298-305, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32387738

ABSTRACT

The dynamics of air bubbles spreading on the underside of solid substrates is an important scientific problem with numerous applications. This work explores the spreading of bubbles against an ultra-thin, porous ultra-high-molecular-weight polyethylene (UHMWPE) film. This polymer film can be used in applications where a solid-liquid-gas interface is involved, like froth flotation for mineral processing, underwater methane capture, to prevent foaming in bioreactors, and in degassing in microfluidics. When an air bubble is released underneath such a film, the bubble bounces against the film, makes contact after the liquid film dewets, spreads against the film and shrinks in size as the gas within the bubble permeates through the pores of the film. In our work, these events were recorded using a high-speed camera. The effect of different surface-active species like surfactants, which exhibit interfacial mobility and proteins, which form a viscoelastic interfacial network, was also studied. The adsorption of these surface-active molecules led to profound differences in the interaction of the bubbles and their ultimate removal through the film. Importantly, the permeation flux of the bubbles was lower in the presence of these molecules, affected in part by a lower capillary driving force and also because of the decreased film permeability. This ultra-thin film offers a high permeation flux, which makes it a promising candidate for the aforementioned applications. Furthermore, the effect of surface-active species such as surfactants and proteins encountered in these environments is elucidated.

8.
Materials (Basel) ; 13(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012828

ABSTRACT

It is well known that carbon nanotube (CNT) oxidation (usually with concentrated HNO3) is a major step before the electrophoretic deposition (EPD). However, the recent discovery of the "onion effect" proves that multiwalled carbon nanotubes are not only oxidized, but a simultaneous unsheathing process occurs. We present the first report concerning the influence of unsheathing on the properties of the thus-formed CNT surface layer. In our study we examine how the process of gradual oxidation/unsheathing of a series of multiwalled carbon nanotubes (MWCNTs) influences the morphology of the surface formed via EPD. Taking a series of well-characterized and gradually oxidized/unsheathing Nanocyl MWCNTs and performing EPD on a carbon fiber surface, we analyzed the morphology and wettability of the CNT surfaces. Our results show that the water contact angle could be gradually changed in a wide range (125-163°) and the major property determining its value was the diameter of aggregates formed before the deposition process in the solvent. Based on the obtained results we determined the parameters having a crucial influence on the morphology of created layers. Our results shed new light on the deposition mechanism and enable the preparation of surfaces with steerable roughness and wettability.

9.
Adv Colloid Interface Sci ; 276: 102085, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887573

ABSTRACT

Importance of external conditions and properties of phases creating liquid films, in outcome of the air bubble collisions with liquid/air and liquid/solids interfaces in clean water and in liquid solutions, is critically reviewed. The review is focussed on initial stages of the liquid films formation by bubbles colliding with interfaces, as well as, on analysis of the most important factors responsible for the collision's outcome, that is, either the rapid bubble bouncing or formation of the symmetrical or unsymmetrical liquid films and their thinning to the critical rupture thicknesses. Data on formation of liquid films under dynamic conditions, both in pure liquids and solutions of electrolytes and various surface-active substances, are reviewed and importance of hydrodynamic boundary conditions at interacting interfaces for energy balance in the system is discussed. It is shown that the liquid films stability, which in stagnant systems are directly determined by properties of the liquid/gas and liquid/solid interfaces, can be quite different in dynamic environment. A mechanism of the bubble bouncing from various interfaces in terms of interplay between energy exchange and kinetics of liquid film drainage is analyzed. It is shown that this mechanism is universal and irrelevant on the nature of interacting phases. Moreover, mechanisms responsible for wetting (unsymmetrical) film stability under dynamic conditions are discussed in light of the most recent studies, showing a crucial role of electrolyte, kind and concentration of surface-active substances, electrical surface charge, hydrophilic/hydrophobic properties of solids and presence of air entrapped (nano- and/or micro-bubbles) at surfaces of highly hydrophobic solids in the liquid films rupture.

10.
Phys Chem Chem Phys ; 20(4): 2403-2412, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29308463

ABSTRACT

The influence of the initial adsorption coverage at the surface of an air bubble (radius 0.74 mm) formed at a capillary orifice on profiles of its rising velocities and shape variations was investigated in n-octanol, n-octyltrimethylammonium bromide (CTAB) and Tween80 solutions of different concentrations. The bubble formation and the degree of adsorption coverage at its surface at the moment of departure were controlled using an elaborated automatic bubble generator (Bubble-on-Demand) coupled with a programmable bubble trap, allowing adsorption time control over the motionless (captured) bubble interface. It was found that the degree of the initial bubble adsorption coverage (whose value was calculated according to the existing adsorption models), has a profound influence on the kinetics of the dynamic adsorption layer (DAL) development.

11.
Phys Chem Chem Phys ; 15(40): 17324-32, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24022507

ABSTRACT

Experiments on the coalescence time of submillimeter bubbles colliding with a distilled water/air interface either being at rest (undisturbed) or vibrating vertically (with controlled amplitude and frequency) were carried out. It was found that the outcome of the bubble collision (coalescence or bounce) depends on impact velocity and size of the bubble, i.e. the parameters determining the bubble deformation degree. With the surface at rest, when the deformation of the bubble was sufficiently high, bubble bouncing was observed. It was caused by the fact that the radius of the intervening liquid film formed between the colliding bubble and water/air interface was large enough to prevent the liquid layer from reaching its thickness of rupture within the time of bubble-interface contact. Coalescence occurred in a consecutive collision if the bubble deformation was below a threshold value, as a result of dissipation of the kinetic energy associated with the bubble motion. The hypothesis about the crucial role of the bubble deformation and size of the liquid film formed in the bouncing mechanism was confirmed in a series of experiments where the bubble collided with a vibrating water/air interface. It was shown that when the kinetic energy was properly re-supplied from an external source (interface vibrations), the spectacular phenomenon of "immortal" bubbles, dancing indefinitely at the water/air interface, was achieved. It was shown that "immortal" bubble formation is a consequence of a similarly high degree of the bubble shape deformation and consequently a large enough radius of the liquid film formed.

12.
Phys Chem Chem Phys ; 15(7): 2586-95, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23322074

ABSTRACT

We have investigated the influence of concentration of surfactants typically used as flotation frothers (α-terpineol and n-octanol) and roughness of the solid surface on phenomena occurring during rising bubble collisions with a model hydrophobic Teflon surface. The time of three-phase contact (TPC) formation (t(TPC)) and the time of drainage (t(D)) of the film formed between the colliding bubble and Teflon surfaces were determined using a high-speed camera working with a frequency 1040 Hz. The Teflon surface roughness was varied on a microscopic scale, within a roughness ranging between 1 and 100 µm. We have found that the roughness of the Teflon surface is a crucial factor of the kinetics of the TPC formation, both in the absence and in the presence of the surfactants. With the surface roughness increasing from ca. 1 to 80 µm the t(TPC) can be shortened by an order of magnitude, i.e. from 105 ms down to a few milliseconds. We have demonstrated that bouncing of the colliding bubble is responsible for the large differences in the times of TPC formation at the Teflon surfaces of different roughness. Low concentrations of α-terpineol and n-octanol caused a decrease in the t(TPC) with respect to distilled water. However, at high concentrations the t(TPC) was prolonged. The prolongation of the time of the TPC formation was dependent on the Teflon surface roughness and we have attributed this effect to different amounts of air present in the cavities and scratches of hydrophobic surfaces of different roughness. The mechanism of prolongation of the t(TPC) at high concentration of surface-active substances (frother overdosage) is proposed.

13.
Langmuir ; 27(6): 2250-7, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21309589

ABSTRACT

Phenomena occurring during bubble collisions with a water/air interface were studied. The bubble impact velocity was tuned by the following: (i) changing the bubble diameter and (ii) adjusting the distance between the bubble formation point and the water free surface (at the bubble acceleration stage). It was found that the bubble bouncing and the coalescence time, i.e., the time from the moment of the bubble's first collision to its rupture, increased with the impact velocity. The coalescence time varied from a few to ca. 120 ms when the bubble impact velocity was changed from 8.0 to 36.7 cm/s. It was found that a prolongation of the coalescence time was related to size of the liquid film formed during the bubble collision. Higher impact velocity means larger deformation of the bubble shape and larger radius of the liquid film formed. It was shown that the bubble bounces when the thinning water film between the bubble and the air/water interface does not reach its rupture thickness during the collision time.

SELECTION OF CITATIONS
SEARCH DETAIL
...