Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 47(11): 1901-1912, 2022 10.
Article in English | MEDLINE | ID: mdl-35396500

ABSTRACT

Atypical responses to sensory stimuli are considered as a core aspect and early life marker of autism spectrum disorders (ASD). Although recent findings performed in mouse ASD genetic models report sensory deficits, these were explored exclusively during juvenile or adult period. Whether sensory dysfunctions might be present at the early life stage and rescued by therapeutic strategy are fairly uninvestigated. Here we found that under cool environment neonatal mice lacking the autism-associated gene Magel2 present pup calls hypo-reactivity and are retrieved with delay by their wild-type dam. This neonatal atypical sensory reactivity to cool stimuli was not associated with autonomic thermoregulatory alteration but with a deficit of the oxytocinergic system. Indeed, we show in control neonates that pharmacogenetic inactivation of hypothalamic oxytocin neurons mimicked atypical thermosensory reactivity found in Magel2 mutants. Furthermore, pharmacological intranasal administration of oxytocin to Magel2 neonates was able to rescue both the atypical thermosensory response and the maternal pup retrieval. This preclinical study establishes for the first-time early life impairments in thermosensory integration and suggest a therapeutic potential benefit of intranasal oxytocin treatment on neonatal atypical sensory reactivity for autism.


Subject(s)
Autistic Disorder , Hypesthesia , Maternal Behavior , Oxytocin , Proteins , Administration, Intranasal , Age Factors , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Autism Spectrum Disorder/complications , Autistic Disorder/complications , Autistic Disorder/genetics , Autistic Disorder/metabolism , Central Nervous System Agents/administration & dosage , Central Nervous System Agents/metabolism , Female , Hypesthesia/etiology , Hypesthesia/genetics , Hypesthesia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Maternal Behavior/physiology , Mice , Oxytocin/administration & dosage , Oxytocin/metabolism , Proteins/genetics , Proteins/metabolism , Social Behavior
2.
Front Mol Neurosci ; 15: 1075305, 2022.
Article in English | MEDLINE | ID: mdl-36698777

ABSTRACT

Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.

SELECTION OF CITATIONS
SEARCH DETAIL
...