Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771044

ABSTRACT

According to the WHO, the secondary form of hematopoietic-depressive status increases the risk of death in people with oncological, infectious, and hormonal diseases. The choice of drugs that stimulate the hematopoietic activity of B-lymphopoiesis is limited. The current leucopoiesis drugs have a number of side effects: thymic preparations stimulate the production of PGE2, which causes chronic inflammation and various autoimmune diseases through the differentiation of T helper 1 (Th1) cells, the proliferation of Th17 cells, and the production of IL-22 from Th22 cells through EP2 and EP4 receptors; cytokine preparations can cause uncontrolled immune reactions and impaired contractility of smooth and cardiac muscles; drugs based on nucleic acids can stimulate the division of all cells, including bacterial and cancerous ones. The use of oligonucleotides such as ribozymes and antisense oligodeoxynucleotides (AS-ODNs) shows promise as therapeutic moieties, but faces a number of challenges such as nuclease sensitivity, off-target effects, and efficient delivery. The search for substances that stimulate B-lymphopoiesis among ionic compounds was motivated by the discovery of the unique properties of lidocaine docusate, one of the first ionic liquid forms of the known drugs. The lidocaine docusate (protonated form of lidocaine (2-(diethylamino)-N-(2,6-dimethylphenyl) acetamide + docusate-anion (dioctylsulfosuccinate))) suppresses the division of pheochromocytoma cells and activates immunity in rats. The trimecaine-based ionic compound (TIC) demonstrates high B-lymphopoiesis-stimulating activity. The TIC compound stimulates an increase in the volume of transitional B cells, which play an important role for further differentiation and formation of a sufficient number of mature B1 cells and mature B2 cells, where mature B2 cells make up the bulk of the functional population of B lymphocytes. The TIC compound most strongly stimulated the restoration of the number of marginal zone B cells, follicular B cells, and activated germinal center B cells after the cytotoxic emptying of the follicular centers of the spleen induced cyclophosphamide. It significantly exceeds the activity of the comparison drug methyluracil. The TIC compound does not affect the level of pro-B, pre-B-I, or pre-B-II bone marrow cells, which prevents the risk of the formation of immature functionally defective cells.


Subject(s)
Lymphopoiesis , Trimecaine , Rats , Animals , Trimecaine/pharmacology , Lymphopoiesis/physiology , Dioctyl Sulfosuccinic Acid/pharmacology , B-Lymphocytes , Cyclophosphamide/pharmacology
2.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014450

ABSTRACT

In order to optimize biofuel (including bioethanol) production processes, various problems need to be solved, such as increasing the sugar content of raw materials/biomass to gain a higher yield of the product. This task can be solved in several ways, with their own advantages and disadvantages, and an integrated approach, such as using a combination of ripening agents and phytohormones or application of a superabsorbent polymer with at least one sugar-enhancing agent, can be applied as well. Here, we reviewed several methods, including pre- and postharvest factors (light, temperature, partial replacement of potassium with magnesium, etc.), genetic modifications (traditional breeding, phytohormones, etc.), chemical ripening methods (Ethephon, Moddus, etc.), and some alternative methods (DMSO treatment, ionic liquids, etc.). The aim of this review was to provide a comprehensive, up-to-date summary of methods of increasing the carbohydrate level in plants/biomass for bioethanol production.


Subject(s)
Agrochemicals , Biofuels , Biomass , Carbohydrates/chemistry , Ethanol , Fermentation , Plant Breeding , Plant Growth Regulators , Sugars
3.
Biomed Res Int ; 2020: 7636290, 2020.
Article in English | MEDLINE | ID: mdl-32420370

ABSTRACT

A study of myelostimulating activity of ionic compounds-trimecaine alkyl iodide derivatives under the cipher BIV (BIV-117, BIV-118, and BIV-119) was conducted on a model of doxorubicin pancytopenia in white laboratory rats. It was established that the compounds BIV-117 and BIV-119 had a pronounced leukopoiesis-stimulating activity, exceeding the activity of the methyluracil as a comparison drug. Compounds BIV-117 and BIV-119 had erythropoiesis- and thrombocytopoiesis-stimulating activity at the level of methyluracil.


Subject(s)
Leukopoiesis/drug effects , Trimecaine/pharmacology , Animals , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Erythropoiesis/drug effects , Female , Rats , Thrombopoiesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...