Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 435: 119-27, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25233225

ABSTRACT

HYPOTHESIS: Particle space arrangement is a very important factor that determines the physico-mechanical properties of soil. Formations of three-dimensional (3D) structured networks within gelled or flocculated suspension may prevent clay particles and aggregates from settling under gravity force and by encapsulate water within such a network, lead to poor sludge dewatering. To better understand this phenomenon, a microstructural investigation of a smectite clay (SWy2) suspension was conducted. EXPERIMENTS: SWy-2 was diluted in water and a moderately salty aqueous solution and was studied with the aid of a synchrotron-powered transmission X-ray microscope (TXM) and cryogenic transmission electron microscope (Cryo-TEM). Observations of mutual particle arrangement in 3D spaces were conducted within a natural water environment after vitrification without drying. FINDINGS: A new type of micro-architecture in particle space arrangement was observed. Smectite flakes were mostly in edge-to-edge (EE) contact and formed a 3D network, confirming a "net of flakes" structural model. Clay particles form a complex and multi-hierarchic flocculated structure with characteristic cellular chained networking. Chained aggregates build cellular elements, encapsulating water inside closed voids. Increasing ionic strength results in the development of multi-hierarchic voids categories, with most water retained within nano-pores.

2.
J Colloid Interface Sci ; 349(2): 492-7, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20594558

ABSTRACT

An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. There is circumstantial evidence that linear and nonlinear effect take part in force results from compression of the silicone oil film coated on the glass sphere.

3.
J Colloid Interface Sci ; 349(1): 86-92, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20621806

ABSTRACT

The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation.

4.
J Colloid Interface Sci ; 346(2): 311-6, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20223471

ABSTRACT

The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.

5.
J Colloid Interface Sci ; 344(2): 563-74, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20144831

ABSTRACT

In paper has been to investigate the morphological patterns and kinetics of PDMS spreading on silicon wafer using combination of techniques like ellipsometry, atomic force microscope (AFM), scanning electron microscope (SEM) and optical microscopy. A macroscopic silicone oil drops as well as PDMS water based emulsions were studied after deposition on a flat surface of silicon wafer in air, water and vacuum. Our own measurements using an imaging ellipsometer, which also clearly shows the presence of a precursor film. The diffusion constant of this film, measured with a 60,000 cS PDMS sample spreading on a hydrophilic silicon wafer is D(f)=1.4x10(-11) m(2)/s. Regardless of their size, density and method of deposition, droplets on both types of wafer (hydrophilic and hydrophobic) flatten out over a period of many hours, up to 3 days. During this process neighbouring droplets may coalesce, but there is strong evidence that some of the PDMS from the droplets migrates into a thin, continuous film that covers the surface in between droplets. The thin film appears to be ubiquitous if there has been any deposition of PDMS. However, this statement needs further verification. One question is whether the film forms immediately after forced drying, or whether in some or all cases it only forms by spreading from isolated droplets as they slowly flatten out.


Subject(s)
Dimethylpolysiloxanes/chemistry , Air , Diffusion , Emulsions/chemistry , Kinetics , Membranes, Artificial , Particle Size , Silicon/chemistry , Surface Properties , Vacuum , Water/chemistry , Wettability
6.
J Colloid Interface Sci ; 345(1): 34-40, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20149386

ABSTRACT

The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel.

7.
J Colloid Interface Sci ; 339(1): 110-6, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19698950

ABSTRACT

SEM observations of the aqueous suspensions of kaolinite from Birdwood (South Australia) and Georgia (USA) show noticeable differences in number of physical behaviour which has been explained by different micro-structure constitution. Birdwood kaolinite dispersion gels are observed at very low solid loadings in comparison with Georgia KGa-1 kaolinite dispersions which remain fluid at higher solids loading. To explain this behaviour, the specific particle interactions of Birdwood kaolinite, different from interaction in Georgia kaolinite have been proposed. These interactions may be brought about by the presence of nano-bubbles on clay crystal edges and may force clay particles to aggregate by bubble coalescence. This explains the predominance of stair step edge-edge like (EE) contacts in suspension of Birdwood kaolinite. Such EE linked particles build long strings that form a spacious cell structure. Hydrocarbon contamination of colloidal kaolinite particles and low aspect ratio are discussed as possible explanations of this unusual behaviour of Birdwood kaolinite. In Georgia KGa-1 kaolinite dispersions instead of EE contact between platelets displayed in Birdwood kaolinite, most particles have edge-to-face (EF) contacts building a cardhouse structure. Such an arrangement is much less voluminous in comparison with the Birdwood kaolinite cellular honeycomb structure observed previously in smectite aqueous suspensions. Such structural characteristics of KGa-1 kaolinite particles enable higher solid volume fractions pulps to form before significantly networked gel consistency is attained.

8.
J Colloid Interface Sci ; 336(2): 616-23, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19439314

ABSTRACT

The critical role of dissolved gas nano-bubbles at solid surfaces in particle association, aggregation, adsorption and flotation has been recognised in the recent literature. The principles of mineral processing, fine particle separation, and water recovery depend upon changing the surface properties at the solid-liquid interface. It has been assumed that the solid surfaces are either in direct contact with the liquid or may have nano-bubbles attached only at hydrophobic surfaces. This paper shows that gaseous layers 50-100 nm thick can be attached surrounding high proportions of solid clay mineral surfaces restricting reagent access, producing buoyancy and aggregation. Ultrasonic treatment before flocculant addition effectively removes these gaseous layers as well as dispersed micro-bubbles. Re-aggregation after brief ultrasonication produces denser (less buoyant) flocs, demonstrated with cryo-SEM statistical analysis, giving more complete access of the flocculant to the aggregate surfaces. In the subsequent flocculant addition, the settling rates of the denser flocs can be increased up to 40%. If ultrasonic action is continued, the bridged flocs are disturbed with some redispersion of smaller flocs and individual platelets and consequent slower settling rates.

9.
J Colloid Interface Sci ; 328(1): 73-80, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18834991

ABSTRACT

Effective flocculation and dewatering of mineral processing streams containing colloidal clays has become increasingly urgent. Release of water from slurries in tailings streams and dam beds for recycle water consumption, is usually slow and incomplete. To achieve fast settling and minimization of retained water, individual particles need to be bound, in the initial stages of thickening, into large, high-density aggregates, which may sediment more rapidly with lower intra-aggregate water content. Quantitative cryo-SEM image analysis shows that the structure of aggregates formed before flocculant addition has a determinative effect on these outcomes. Without flocculant addition, 3 stages occur in the mechanism of primary dewatering of kaolinite at pH 8: initially, the dispersed structures already show edge-edge (EE) and edge-face (EF) inter-particle associations but these are open, loose and easily disrupted; in the hindered settling region, aggregates are in adherent, chain-like structures of EE and stairstep face-face (FF) associations; this network structure slowly partially rearranges from EE chains to more compact face-face (FF) contacts densifying the aggregates with increased settling rates. During settling, the sponge-like network structure with EE and FF string-like aggregates, limits dewatering because the steric effects in the resulting partially-gelled aggregate structures are dominant. With flocculant addition, the internal structure and networking of the pre-aggregates is largely preserved but they are rapidly and effectively bound together by the aggregate-bridging action of the flocculant. The effects of initial pH and Ca ion addition on these structures are also analyzed. Statistical analysis from cryo-SEM imaging shows that there is an inverse correlation of intra-aggregate porosity with Darcian inter-aggregate permeability whereas there is a strong positive correlation of Darcian permeability with settling and primary dewatering rate as a function of pH in suspension. Graphs of partial void contributions also suggest that it is not total porosity that dominates permeability in these systems but the abundance of larger intra-aggregate voids.

10.
Langmuir ; 24(16): 8954-8, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18620443

ABSTRACT

The unusual behavior of smectites, the ability to change volume when wetted (swelling) or dried (shrinking), makes soil rich in smectites very unstable and dangerous for the building industry because of the movement of building foundations and poor slope stability. These macroscopic properties are dominated by the structural arrangement of the smectites' finest fraction. Here, we show in three dimensions how the swelling phenomenon in smectite, caused by a combination of hydratation and electrostatic forces, may expand the dry smectite volume not 10-fold, as previously thought, but to more than 1000-fold. A new technique, transmission X-ray microscopy, makes it possible to investigate the internal structure and 3-D tomographic reconstruction of clay aggregates. This reveals, for the first time, the smectite gel arrangement in the voluminous cellular tactoid structure within a natural aqueous environment.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Silicates/chemistry , Electron Probe Microanalysis , Gels/chemistry , Microscopy, Atomic Force
11.
J Colloid Interface Sci ; 319(2): 457-61, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18187142

ABSTRACT

The utilization of new transmission X-ray microscopy (TXM) using the synchrotron photon source enable for the first time the study in three dimensions microsize clay particles in aggregates in their natural aqueous environment. This technique makes possible remarkable accurate images of nanosize mineral interparticle structure which forms a new nanocomposite. The Birdwood kaolinite/LDH aggregates observed in the TXM are much more compact than observed before in pure Birdwood kaolinite suspension and similar to aggregates formed after treatment by positively charged surfactant. Kaolinite/LDH aggregates in water reveal complex structure of larger kaolinite platelets connected together by gelled nanoparticles which are most probably LDH colloidal plates. Comparisons of the transmission electron microscope (TEM) and TXM techniques show similarities in particle morphology. The ability to study particles and aggregates in their natural aqueous environment and in 3-dimensions make this technique superior to the TEM technique.

12.
J Colloid Interface Sci ; 319(1): 169-74, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18067907

ABSTRACT

This paper reports new application of new transmission X-ray microscopy powered by a synchrotron source for the study of aqueous based clay suspensions. This paper delineates the advantages and limitations of this method. The tested transmission X-ray microscopy (TXM) technique has shown good agreement with the cryo-stage SEM technique. The spacial resolution of this TXM technique is 60 nm and clay particles with diameter below 500 nm are clearly visible and their pseudohexagonal symmetry is recognizable in detail. It is clearly demonstrated the methodology of implementing TXM to study aqueous based clay suspensions that are close to approximately 60 nm tomographic resolution. The technique enables us to study discrete structure of clay suspensions in water and within aggregates. This has never been previously possible. Larger crystals, more compact aggregates and less colloidal fraction present in kaolinite from Georgia has impact on faster settling and gelling in denser suspension than for Birdwood kaolinite in which colloidal particles create gel-like networking in less dense aqueous suspension.

SELECTION OF CITATIONS
SEARCH DETAIL
...