Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(7): 2080-2093, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38441218

ABSTRACT

Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: ß-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.


Subject(s)
Insulin , Islets of Langerhans , Humans , Insulin/metabolism , Pancreas , Glucose/analysis , Insulin Secretion
2.
Matrix Biol ; 115: 160-183, 2023 01.
Article in English | MEDLINE | ID: mdl-36592738

ABSTRACT

Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human ß-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated ß-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting ß-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Decorin/genetics , Decorin/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism
3.
Adv Drug Deliv Rev ; 189: 114481, 2022 10.
Article in English | MEDLINE | ID: mdl-36002043

ABSTRACT

The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting ß-cell biology, as well as the mechanisms responsible for their autoimmune destruction. ß-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic ß-cells, pathology of T1D and current state of ß-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Insulins , Islets of Langerhans Transplantation , Cell Differentiation , Diabetes Mellitus, Type 1/surgery , Humans , Insulin , Insulins/metabolism
4.
Adv Drug Deliv Rev ; 186: 114323, 2022 07.
Article in English | MEDLINE | ID: mdl-35568103

ABSTRACT

Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.


Subject(s)
Endothelial Cells , Regenerative Medicine , Bioengineering , Biomedical Engineering , Brain , Endothelial Cells/metabolism , Endothelium, Vascular , Humans
5.
Adv Sci (Weinh) ; 8(4): 2002500, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643791

ABSTRACT

Ischemia impacts multiple organ systems and is the major cause of morbidity and mortality in the developed world. Ischemia disrupts tissue homeostasis, driving cell death, and damages tissue structure integrity. Strategies to heal organs, like the infarcted heart, or to replace cells, as done in pancreatic islet ß-cell transplantations, are often hindered by ischemic conditions. Here, it is discovered that the basement membrane glycoprotein nidogen-1 attenuates the apoptotic effect of hypoxia in cardiomyocytes and pancreatic ß-cells via the αvß3 integrin and beneficially modulates immune responses in vitro. It is shown that nidogen-1 significantly increases heart function and angiogenesis, while reducing fibrosis, in a mouse postmyocardial infarction model. These results demonstrate the protective and regenerative potential of nidogen-1 in ischemic conditions.

6.
Cells ; 11(1)2021 12 30.
Article in English | MEDLINE | ID: mdl-35011669

ABSTRACT

The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.


Subject(s)
Immune System Diseases/genetics , Metabolism, Inborn Errors/immunology , Stem Cells/metabolism , Humans
7.
Tissue Eng Part A ; 27(13-14): 977-991, 2021 07.
Article in English | MEDLINE | ID: mdl-33023407

ABSTRACT

The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence ß-cell survival, proliferation, and functionality. Here, we investigated the expression of three relevant groups of pancreatic ECM proteins in human native tissue, including basement membrane (BM) proteins (collagen type 4 [COL4], laminins [LAM]), proteoglycans (decorin [DCN], nidogen-1 [NID1]), and fibril-forming proteins (fibronectin [FN], collagen type 1 [COL1]). In an in vitro hypoxia model, we identified that ECM proteins were differently affected by hypoxic conditions, contributing to an overall loss of ß-cell functionality. The use of a COL1 hydrogel as carrier material demonstrated a protective effect on ß-cells mitigating the effect of hypoxia on proteoglycans as well as fibril-forming protein expression, supporting ß-cell functionality in hypoxia. We further showed that providing endothelial cells (ECs) into the COL1 hydrogel improves ß-cell response as well as the expression of relevant BM proteins. Our data show that ß-cells benefit from a microenvironment composed of structure-providing COL1 with the incorporation of ECs to withstand the harsh conditions of hypoxia. Such hydrogels support ß-cell survival and can serve as an initial source of ECM proteins to allow cell engraftment while preserving cell functionality posttransplantation. Impact statement Expression analysis identifies hypoxia-induced pathological changes in extracellular matrix (ECM) homeostasis as potential targets to support ß-cell transplants by encapsulation in biomaterials for the treatment of diabetes mellitus. A collagen-1 hydrogel is shown to attenuate the effect of hypoxia on ß-cells and their ECM expression. The functionalization of the hydrogel with endothelial cells increases the ß-cell response to glucose and rescues essential basement membrane proteins.


Subject(s)
Endothelial Cells , Extracellular Matrix , Coculture Techniques , Collagen , Extracellular Matrix Proteins , Humans , Laminin
8.
J Biophotonics ; 13(12): e202000375, 2020 12.
Article in English | MEDLINE | ID: mdl-33026180

ABSTRACT

Pancreatic islet isolation from donor pancreases is an essential step for the transplantation of insulin-secreting ß-cells as a therapy to treat type 1 diabetes mellitus. This process however damages islet basement membranes, which can lead to islet dysfunction or death. Posttransplantation, islets are further stressed by a hypoxic environment and immune reactions that cause poor engraftment and graft failure. The current standards to assess islet quality before transplantation are destructive procedures, performed on a small islet population that does not reflect the heterogeneity of large isolated islet batches. In this study, we incorporated fluorescence lifetime imaging microscopy (FLIM) into a pancreas-on-chip system to establish a protocol to noninvasively assess the viability and functionality of pancreatic ß-cells in a three-dimensional in vitro model (= pseudo-islets). We demonstrate how (pre-) hypoxic ß-cell-composed pseudo-islets can be discriminated from healthy functional pseudo-islets according to their FLIM-based metabolic profiles. The use of FLIM during the pretransplantation pancreatic islet selection process has the potential to improve the outcome of ß-cell islet transplantation.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Fluorescence , Humans , Hypoxia
9.
Matrix Biol ; 85-86: 205-220, 2020 01.
Article in English | MEDLINE | ID: mdl-31238092

ABSTRACT

The increasing prevalence of diabetes, its heterogeneity, and the limited number of treatment options drive the need for physiologically relevant assay platforms with human genetic background that have the potential to improve mechanistic understanding and e\xpedite diabetes-related research and treatment. In this study, we developed an endocrine pancreas-on-a-chip model based on a tailored microfluidic platform, which enables self-guided trapping of single human pseudo-islets. Continuous, low-shear perfusion provides a physiologically relevant microenvironment especially important for modeling and monitoring of the endocrine function as well as sufficient supply with nutrients and oxygen. Human pseudo-islets, generated from the conditionally immortalized EndoC-ßH3 cell line, were successfully injected by hydrostatic pressure-driven flow without altered viability. To track insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, dynamic sampling of the supernatant as well as non-invasive real-time monitoring using Raman microspectroscopy was established on-chip. Dynamic sampling indicated a biphasic glucose-stimulated insulin response. Raman microspectroscopy allowed to trace glucose responsiveness in situ and to visualize different molecular structures such as lipids, mitochondria and nuclei. In-depth spectral analyses demonstrated a glucose stimulation-dependent, increased mitochondrial activity, and a switch in lipid composition of insulin secreting vesicles, supporting the high performance of our pancreas-on-a-chip model.


Subject(s)
Glucose/pharmacology , Insulin/metabolism , Islets of Langerhans/cytology , Cell Line , Cellular Microenvironment , Humans , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Lab-On-A-Chip Devices , Organ Culture Techniques , Spectrum Analysis, Raman
10.
Tissue Eng Part A ; 26(7-8): 387-399, 2020 04.
Article in English | MEDLINE | ID: mdl-31680653

ABSTRACT

ß-Cell functionality and survival are highly dependent on the cells' microenvironment and cell-cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between ß-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic ß-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based ß-cells (EndoC-ßH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of ß-cells and ECs with a successful stimulation of ß-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human ß-cells and ECs, showing that the architecture of pseudo-islets significantly affects ß-cell functionality. Impact statement Tissue engineering of coculture systems containing ß-cells and endothelial cells (ECs) is a promising technique to stimulate ß-cell functionality. In this study, we analyzed human pancreatic islet tissue and revealed three different native distributions of ß-cells and ECs. We successfully recreated these distributions in vitro by employing magnetic levitation of human ß-cells and ECs, forming controlled heterotypic pseudo-islets, which enabled us to identify a significant impact of the pseudo-islet architecture on insulin secretion.


Subject(s)
Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans Transplantation , Rats , Tissue Engineering/methods
11.
Adv Drug Deliv Rev ; 140: 101-128, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30359630

ABSTRACT

Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.


Subject(s)
Diabetes Mellitus , Stem Cells , Tissue Engineering/methods , Animals , Humans
12.
Biomater Sci ; 6(5): 1076-1083, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29595848

ABSTRACT

Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.


Subject(s)
Cell Movement/drug effects , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/chemistry , Nanoconjugates/chemistry , Fibroblast Growth Factor 2/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Hyaluronic Acid/chemistry , Hydrophobic and Hydrophilic Interactions
13.
Biomaterials ; 93: 95-105, 2016 07.
Article in English | MEDLINE | ID: mdl-27086270

ABSTRACT

Anti-VEGF drugs that are used in conjunction with laser ablation to treat patients with diabetic retinopathy suffer from short half-lives in the vitreous of the eye resulting in the need for frequent intravitreal injections. To improve the intravitreal half-life of anti-VEGF drugs, such as the VEGF decoy receptor sFlt-1, we developed multivalent bioconjugates of sFlt-1 grafted to linear hyaluronic acid (HyA) chains termed mvsFlt. Using size exclusion chromatography with multiangle light scattering (SEC-MALS), SDS-PAGE, and dynamic light scattering (DLS), we characterized the mvsFlt with a focus on the molecular weight contribution of protein and HyA components to the overall bioconjugate size. We found that mvsFlt activity was independent of HyA conjugation using a sandwich ELISA and in vitro angiogenesis assays including cell survival, migration and tube formation. Using an in vitro model of the vitreous with crosslinked HyA gels, we demonstrated that larger mvsFlt bioconjugates showed slowed release and mobility in these hydrogels compared to low molecular weight mvsFlt and unconjugated sFlt-1. Finally, we used an enzyme specific to sFlt-1 to show that conjugation to HyA shields sFlt-1 from protein degradation. Taken together, our findings suggest that mvsFlt bioconjugates retain VEGF binding affinity, shield sFlt-1 from enzymatic degradation, and their movement in hydrogel networks (in vitro model of the vitreous) is controlled by both bioconjugate size and hydrogel network mesh size. These results suggest that a strategy of multivalent conjugation could substantially improve drug residence time in the eye and potentially improve therapeutics for the treatment of diabetic retinopathy.


Subject(s)
Biocompatible Materials/chemistry , Hyaluronic Acid/chemistry , Vascular Endothelial Growth Factor Receptor-1/metabolism , Cell Movement , Chromatography, Gel , Dynamic Light Scattering , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Matrix Metalloproteinase 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...