Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(5): 369, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806478

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3ß. While STAT3α is predominantly described as an oncogenic driver, STAT3ß has been suggested to act as a tumor suppressor. To elucidate the role of STAT3ß in AML, we established a mouse model of STAT3ß-deficient, MLL-AF9-driven AML. STAT3ß deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3ß. Accordingly, STAT3ß-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3ß expression. Together, our data corroborate the tumor suppressive role of STAT3ß in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3ß/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3ß/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.


Subject(s)
Leukemia, Myeloid, Acute , STAT3 Transcription Factor , Animals , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Humans , STAT3 Transcription Factor/metabolism , Mice , Signal Transduction , Interferons/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Cell Line, Tumor , Nitriles , Pyrazoles , Pyrimidines
2.
Front Immunol ; 13: 947568, 2022.
Article in English | MEDLINE | ID: mdl-35865518

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.


Subject(s)
Killer Cells, Natural , Neoplasms , STAT3 Transcription Factor , Cytokines/metabolism , Humans , Interleukin-6/metabolism , Janus Kinases/metabolism , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...