Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953869

ABSTRACT

Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.


What is this article about? We searched for a possible impact of acute inhalation exposure to nanoparticles (NPs) released during the grinding of dental nanocomposites used for teeth reconstruction. The exposure design utilized in our study simulated the acute exposure of the dental staff to the NPs. Our research fills the gaps in knowledge in the field of acute human inhalation exposure to dental nanocomposites.What were the results? Results indicate that the impact of exposure to NPs is dependent on the style of working as well as on the interindividual biological variability among study subjects. Changes in expression levels of genes associated with an increase of oxidative stress, synthesis of eicosanoids (signaling molecules related to e.g., immune responses), and cell division were detected.What do the results of the study mean? All the observed changes may contribute to the pathogenesis of neurodegenerative disorders, carcinogenesis, or problems during pregnancy. Occupational exposure to inhaled NPs, including those generated in dental practice can pose a significant health risk, and protective measures when working with these materials should be considered. More research is needed to compare our results with chronic (long-term) exposure to similar materials to show the hazards related to their inhalation.

2.
Environ Toxicol Pharmacol ; 108: 104462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710242

ABSTRACT

Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.


Subject(s)
Nanocomposites , Occupational Exposure , Humans , Female , Nanocomposites/toxicity , Nanocomposites/chemistry , Middle Aged , Occupational Exposure/adverse effects , Chromosome Aberrations , Adult , Dental Materials/toxicity , Chromosome Painting
3.
Nanomedicine (Lond) ; 19(3): 185-198, 2024 02.
Article in English | MEDLINE | ID: mdl-38275177

ABSTRACT

Aim: To find a practical biomonitoring method for researchers exposed to nanoparticles causing oxidative stress. Methods: In a continuation of a study in 2016-2018, biological samples (plasma, urine and exhaled breath condensate [EBC]) were collected in 2019-2020 from 43 researchers (13.8 ± 3.0 years of exposure) and 45 controls. Antioxidant status was assessed using glutathione (GSH) and ferric-reducing antioxidant power, while oxidative stress was measured as thiobarbituric acid reactive substances, all using spectrophotometric methods. Researchers' personal nanoparticle exposure was monitored. Results: Plasma GSH was elevated in researchers both before and after exposure (p < 0.01); postexposure plasma GSH correlated with nanoparticle exposure, and GSH in EBC increased. Conclusion: The results suggest adaptation to chronic exposure to nanoparticles, as monitored by plasma and EBC GSH.


What is this study about? Identifying markers of oxidative stress and/or adaptation to oxidation stress could offer tools for monitoring exposure to nanoparticles in exposed researchers. In this study, we question whether these markers correlate with their personal exposure during the shift. What were the results? We found that exposure to nanoparticles correlated with the antioxidant marker glutathione, which is higher in workers who are already pre-exposed. What do the results mean? This study suggests that the researchers have adapted to nanoparticle exposure and are ready to combat oxidative stress. However, the similarity with increased markers of oxidative stress from asbestos and silica exposure, including nucleic acid oxidation, previously found in these researchers highlights the need for further research in this area to better understand and prevent potential future effects.


Subject(s)
Antioxidants , Nanoparticles , Oxidative Stress , Glutathione , Thiobarbituric Acid Reactive Substances , Breath Tests/methods , Biomarkers/metabolism
4.
Sci Total Environ ; 916: 170303, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38272092

ABSTRACT

Concentration data derived from 1H NMR analysis of the water-soluble organic compounds from fine aerosol (PM2.5) at three Central European background stations, Kosetice, Frýdlant (both in the Czech Republic), and Melpitz (Germany), were used for detailed source apportionment analysis. Two winter and two summer episodes (year 2021) with higher organic concentrations and similar wind directions were selected for NMR analyses. The concentration profiles of 61 water-soluble organic compounds were determined by NMR Aerosolomics and a principal component analysis (PCA) was performed on this dataset. Based on the PCA results, 23 compounds were selected for positive matrix factorization (PMF) analysis in order to identify dominant aerosol sources at rural background sites in Central Europe. Both the PCA and the subsequent PMF analyses clearly distinguished the characteristics of winter and summer aerosol particles. In summer, four factors were identified from PMF and were associated with biogenic aerosol (61-78 %), background aerosol (9-15 %), industrial biomass combustion (7-13 %), and residential heating (5-13 %). In winter, only 3 factors were identified - industrial biomass combustion (33-49 %), residential heating (37-45 %) and a background aerosol (8-30 %). The main difference was observed in the winter season with a stronger contribution of emissions from industrial biomass burning at the Czech stations Kosetice and Frýdlant (47-49 %) compared to the Melpitz station (33 %). However, in general, there were negligible differences in identified sources between stations in the given seasons, indicating a certain homogeneity in PM2.5 composition within Central Europe at least during the sampling periods.

5.
Chemosphere ; 337: 139393, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37399994

ABSTRACT

Isotopic analysis of specific compounds in aerosols can be a useful tool when studying atmospheric processes. Here, we present the results of stable carbon isotope ratio (δ13C) measurements performed on a one-year set (n = 96, Sep. 2013-Aug. 2014) of dicarboxylic acids and related compounds in PM1 at a rural Central European background site, Kosetice (Czech Republic). The most 13C enriched acid was oxalic (C2, annual average = -16.6 ± 5.0‰) followed by malonic (C3, avg. = -19.9 ± 6.6‰) and succinic (C4, avg. = -21.3 ± 4.6‰) acids. Thus, δ13C values decreased with an increase in carbon numbers. Azelaic acid (C9, avg. = -27.2 ± 3.6‰) was found to be the least 13C enriched. A comparison of δ13C of dicarboxylic acids from other background sites, especially in Asia, shows similar values to those from the European site. This comparison also showed that C2 is more 13C enriched at background sites than at urban ones. In general, we did not observe significant seasonal differences in δ13C values of dicarboxylic acids at the Central European station. We observed statistically significant differences (p value < 0.05) between winter and summer δ13C values solely for C4, glyoxylic acid (ωC2), glutaric acid (C5) and suberic acid (C8). The only significant correlations between δ13C of C2 and δ13C of C3 were found in spring and summer, suggesting that the oxidation of C3 to C2 is significant in these months with a strong contribution from biogenic aerosols. The strongest season-independent annual correlation was observed in δ13C values between C2 and C4, the two dominant dicarboxylic acids. Therefore, C4 appears to be the main intermediate precursor of C2 throughout the whole year.


Subject(s)
Aerosols , Air Pollutants , Dicarboxylic Acids , Environmental Monitoring , Dicarboxylic Acids/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Carbon Isotopes/adverse effects
6.
Sci Total Environ ; 892: 164527, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37268131

ABSTRACT

To prevent the fast spread of COVID-19, worldwide restrictions have been put in place, leading to a reduction in emissions from most anthropogenic sources. In this study, the impact of COVID-19 lockdowns on elemental (EC) and organic (OC) carbon was explored at a European rural background site combining different approaches: - "Horizontal approach (HA)" consists of comparing concentrations of pollutants measured at 4 m a.g.l. during pre-COVID period (2017-2019) to those measured during COVID period (2020-2021); - "Vertical approach (VA)" consists of inspecting the relationship between OC and EC measured at 4 m and those on top (230 m) of a 250 m-tall tower in Czech Republic. The HA showed that the lockdowns did not systematically result in lower concentrations of both carbonaceous fractions unlike NO2 (25 to 36 % lower) and SO2 (10 to 45 % lower). EC was generally lower during the lockdowns (up to 35 %), likely attributed to the traffic restrictions whereas increased OC (up to 50 %) could be attributed to enhanced emissions from the domestic heating and biomass burning during this stay-home period, but also to the enhanced concentration of SOC (up to 98 %). EC and OC were generally higher at 4 m suggesting a greater influence of local sources near the surface. Interestingly, the VA revealed a significantly enhanced correlation between EC and OC measured at 4 m and those at 230 m (R values up to 0.88 and 0.70 during lockdown 1 and 2, respectively), suggesting a stronger influence of aged and long distance transported aerosols during the lockdowns. This study reveals that lockdowns did not necessarily affect aerosol absolute concentrations but it certainly influenced their vertical distribution. Therefore, analyzing the vertical distribution can allow a better characterization of aerosol properties and sources at rural background sites, especially during a period of significantly reduced human activities.


Subject(s)
Air Pollutants , COVID-19 , Humans , Aged , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring , Seasons , COVID-19/prevention & control , Communicable Disease Control , Respiratory Aerosols and Droplets , Carbon/analysis , China
7.
PLoS One ; 17(6): e0268542, 2022.
Article in English | MEDLINE | ID: mdl-35675288

ABSTRACT

Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40-400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 × 14 × 8 cm achieved filtration efficiencies of 98% at 95 L/min and 99.5% at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.


Subject(s)
COVID-19 , Respiratory Protective Devices , Aerosols , COVID-19/prevention & control , Equipment Design , Filtration/methods , Humans , Masks , Materials Testing/methods , Polyesters
8.
Sci Total Environ ; 817: 153010, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026240

ABSTRACT

The hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) particles produced during dark ozonolysis of γ-terpinene under different reaction conditions were investigated. The SOA particles were produced in the presence or absence of cyclohexane, an OH scavenger; 1,3,5-trimethylbenzene, an anthropogenic volatile organic compound; and (NH4)2SO4 seed particles. A hygroscopicity tandem differential mobility analyzer was used to determine the GFs of the SOA particles at RHs ≤ 93%. For some experiments, a CCN counter was used for size-resolved measurement of CCN activation at supersaturation (S) in the range of 0.1 to 1%. The single hygroscopicity parameter κ was derived from both the GF and CCN measurements. Under subsaturated conditions, all the SOA (except those in the presence of the (NH4)2SO4 seeds) showed small GF values. These GFs demonstrated that SOA mass loading affected the GF. A decrease in the SOA mass loading led to increased GF and corresponding κGFvalues. However, in a supersaturation regime, the SOA mass loading and the size of the particles did not significantly alter the CCN activity of the SOA. Our CCN measurements showed higher κCCN values (κCCN = 0.20-0.24) than those observed in most monoterpene ozonolysis studies (κCCN = 0.1-0.14). This difference may have been due to the presence of the two endocyclic double bonds in the γ-terpinene structure, which may have affected the SOA chemical composition, in contrast to monoterpenes that contain an exocyclic double bond. Our comparisons of sub- and supersaturated conditions showed a larger range of κ values than other experiments. Average κCCN/κGF ratios of ~7 and 14 were obtained in the unseeded SOA experiments at low and high SOA mass loadings, respectively. The average κCCN of 0.23 indicated that the SOA produced during ozonolysis of γ-terpinene exhibited fairly high CCN activity.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Aerosols/chemistry , Air Pollutants/chemistry , Cyclohexane Monoterpenes , Ozone/chemistry , Volatile Organic Compounds/chemistry , Wettability
9.
Sci Total Environ ; 803: 149767, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525748

ABSTRACT

Isotope fractionation between the gas and aerosol phases is an important phenomenon for studying atmospheric processes. Here, for the first time, seasonally resolved stable carbon isotope ratio (δ13C) values are systematically used to study phase interactions in bulk aerosol and gaseous carbonaceous samples. Seasonal variations in the δ13C of total carbon (TC; δ13CTC) and water-soluble organic carbon (WSOC; δ13CWSOC) in fine aerosol particles (PM2.5) as well as in the total carbon of part of the gas phase (TCgas; δ13CTCgas) were studied at a suburban site in Prague, Czech Republic, Central Europe. Year-round samples were collected for the main and backup filters from 14 April 2016 to 1 May 2017 every 6 days with a 48 h sampling period (n = 66). During all seasons, the highest 13C enrichment was found in WSOC, followed by particulate TC, whereas the highest 13C depletion was found in gaseous TC. We observed a clear seasonal pattern for all δ13C, with the highest values in winter (avg. δ13CTC = -25.5 ± 0.8‰, δ13CWSOC = -25.0 ± 0.7‰, δ13CTCgas = -27.7 ± 0.5‰) and the lowest values in summer (avg. δ13CTC = -27.2 ± 0.5‰, δ13CWSOC = -26.4 ± 0.3‰, δ13CTCgas = -28.9 ± 0.3‰). This study supports the existence of different aerosol sources at the site during the year. Despite the different seasonal compositions of carbonaceous aerosols, the isotope difference (Δδ13C) between δ13CTC (aerosol) and δ13CTCgas (gas phase) was similar during the seasons (year avg. 1.97 ± 0.50‰). Moreover, Δδ13C between WSOC and TC in PM2.5 showed a difference between spring and winter, but in general, these values were also similar year-round (year avg. 0.71 ± 0.37‰). During the entire period, TCgas and WSOC were the most 13C-depleted and most 13C-enriched fractions, respectively, and although the resulting difference Δ(δ13CWSOC - Î´13CTCgas) was significant, it was almost invariant throughout the year (2.67 ± 0.44‰). The present study suggests that the stable carbon isotopic fractionation between the bulk aerosol and gas phases is probably not entirely dependent on the chemical composition of individual carbonaceous compounds from different sources.


Subject(s)
Air Pollutants , Carbon , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , Carbon Isotopes/analysis , Environmental Monitoring , Particulate Matter/analysis , Seasons
10.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360600

ABSTRACT

A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Nanoparticles/adverse effects , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Adult , Case-Control Studies , CpG Islands , Czech Republic/epidemiology , Female , Humans , Male , Middle Aged , Occupational Diseases/chemically induced , Occupational Diseases/genetics
11.
PLoS One ; 16(7): e0254979, 2021.
Article in English | MEDLINE | ID: mdl-34297736

ABSTRACT

BACKGROUND AND AIMS: SARS-CoV-2 is a worldwide serious health problem. The aim of this study was to demonstrate the number of potentially infectious particles present during endoscopic procedures and find effective tools to eliminate the risks of SARS-CoV-2 infection while performing them. METHODS: An experimental model which focused on aerosol problematics was made in a specialized laboratory. This model simulated conditions present during endoscopic procedures and monitored the formation of potentially infectious fluid particles from the patient's body, which pass through the endoscope and are then released into the environment. For this reason, we designed and tested a prototype of a protective cover for the endoscope's control body to prevent the release and spread of these fluid particles from its working channel. We performed measurements with and without the protective cover of the endoscope's control body. RESULTS: It was found that liquid coming through the working channel of the endoscope with forceps or other instruments inside generates droplets with a diameter in the range of 0.1-1.1 mm and an initial velocity of up to 0.9 m/s. The average number of particles per measurement per whole measured area without a protective cover on the endoscope control body was 51.1; with this protective cover on, the measurement was 0.0, p<0.0001. CONCLUSIONS: Our measurements proved that fluid particles are released from the working channel of an endoscope when forceps are inserted. A special protective cover for the endoscope control body, made out of breathable material (surgical cap) and designed by our team, was found to eliminate this release of potentially infectious fluid particles.


Subject(s)
COVID-19 , Endoscopy, Gastrointestinal , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Protective Clothing , SARS-CoV-2 , COVID-19/prevention & control , COVID-19/transmission , Humans
12.
Sci Total Environ ; 790: 148131, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34107406

ABSTRACT

Field studies have identified alkylammonium salts as important components of secondary marine organic aerosols. In this work, we study the hygroscopic behavior of laboratory-generated alkylammonium aerosol particles, including monomethylammonium chloride (MMACl), dimethylammonium chloride (DMACl), trimethylammonium chloride (TMACl), diethylammonium chloride (DEACl), and their mixtures with inorganic salts containing ammonium sulfate (NH4)2SO4, sodium chloride NaCl, calcium nitrate Ca(NO3)2 and sodium sulfate Na2SO4 at different dry mass ratios with a hygroscopicity tandem differential mobility analyzer (HTDMA). The hygroscopic growth of pure alkylammonium salt particles (except for DEACl) reveals gradual water uptake over the whole studied range of relative humidities (RHs). In general, the impact of the presence of alkylammonium chloride on the phase behavior and hygroscopic growth of mixtures depends on the chemical composition of particles and volume fraction of the alkylammonium chloride in the mixtures. For alkylammonium/(NH4)2SO4 mixed particles (except for TMACl/(NH4)2SO4), the hygroscopic growth shows a smooth growth tendency when the organic content is high, while the deliquescence transition is observed for alkylammonium salt/NaCl mixtures at all mass ratios. Regarding the different mixtures of alkylammonium/Ca(NO3)2 particles, continuous water uptake without phase transition is observed over the studied RH range, indicating that alkylammonium salts impose no effect on the liquid-like state of calcium nitrate. The alkylammonium/Na2SO4 mixtures show obvious particle shrinkage prior to the deliquescence point. A similar behavior is also observed for alkylammonium salt/NaCl mixtures. The observed diameter reduction can be attributed to the transformation of porous or irregularly shaped solid particles into more compact near-spherical particles. In the following, measured growth factors (GFs) are compared with values predicted with the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and ideal solution model. The ZSR predictions for different alkylammonium/inorganic mixtures are similar to the measured GFs as long as the mixed particles are in a liquid-like state.


Subject(s)
Salts , Sodium Chloride , Aerosols , Ammonium Sulfate , Wettability
13.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33431650

ABSTRACT

The science around the use of masks by the public to impede COVID-19 transmission is advancing rapidly. In this narrative review, we develop an analytical framework to examine mask usage, synthesizing the relevant literature to inform multiple areas: population impact, transmission characteristics, source control, wearer protection, sociological considerations, and implementation considerations. A primary route of transmission of COVID-19 is via respiratory particles, and it is known to be transmissible from presymptomatic, paucisymptomatic, and asymptomatic individuals. Reducing disease spread requires two things: limiting contacts of infected individuals via physical distancing and other measures and reducing the transmission probability per contact. The preponderance of evidence indicates that mask wearing reduces transmissibility per contact by reducing transmission of infected respiratory particles in both laboratory and clinical contexts. Public mask wearing is most effective at reducing spread of the virus when compliance is high. Given the current shortages of medical masks, we recommend the adoption of public cloth mask wearing, as an effective form of source control, in conjunction with existing hygiene, distancing, and contact tracing strategies. Because many respiratory particles become smaller due to evaporation, we recommend increasing focus on a previously overlooked aspect of mask usage: mask wearing by infectious people ("source control") with benefits at the population level, rather than only mask wearing by susceptible people, such as health care workers, with focus on individual outcomes. We recommend that public officials and governments strongly encourage the use of widespread face masks in public, including the use of appropriate regulation.


Subject(s)
COVID-19 , Contact Tracing , Masks , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans
14.
Environ Sci Pollut Res Int ; 28(11): 13352-13364, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33184792

ABSTRACT

Highly time-resolved particle number size distributions (PNSDs) were evaluated during 5 years (2013-2017) at four background stations in the Czech Republic located in different types of environments-urban background (Ústí nad Labem), industrial background (Lom), agricultural background (National Atmospheric Observatory Kosetice), and suburban background (Prague-Suchdol). The PNSD data was used for new particle formation event determination as well as growth rate (GR) and condensation sink (CS) calculations. The differences or similarities of these parameters were evaluated from perspectives of the different pollution load, meteorological condition, and regional or long-range transport. The median growth rate (4 nm h-1) is very similar at all stations, and the most frequent length of growth lasted between 2 and 4 h. Condensation sink reflects the pollution load at the individual station and their connection to the environment type. The highest median, CS = 1.34 × 10-2 s-1, was recorded at the urban station (Ústí nad Labem), and the lowest (CS = 0.85 × 10-2 s-1) was recorded at the agricultural station (National Atmospheric Observatory Kosetice). Conditional probability function polar plots illustrate the influence of source location to GR. These primary potential emission sources involve traffic, operation of a power plant, and domestic heating.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Czech Republic , Environmental Monitoring , Particulate Matter/analysis
15.
Nanomaterials (Basel) ; 10(12)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291323

ABSTRACT

Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.

16.
ACS Omega ; 5(36): 22750-22758, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32954122

ABSTRACT

Nuclear magnetic resonance aerosolomics was proposed as a new approach to the analysis of the water-soluble organic compound fraction in aerosol particulate matter. The identification of individual compounds is based on a comparison of precise chemical shifts in the 1H NMR spectrum with the signals in the standards library. For this purpose, Chenomx metabolomics software and a comprehensive spectra library of 150 compounds known from chemistry of aerosols were used. This approach enabled the identification of 60 compounds in real aerosol samples collected at a suburban site in Prague. Using the metabolomic spectra library, three new compounds were identified in aerosols for the first time, and an association of four other compounds to the atmospheric particulate matter was confirmed. The obtained concentration profiles of all identified chemical individuals were subsequently subjected to advanced statistical analysis. NMR aerosolomics clearly differentiates between summer and winter aerosol samples via multivariate statistical analysis and revealed some interesting trends in composition, according to aerosol particle size. Furthermore, the univariate statistical analysis was applied to highlight compounds responsible for the group separation, and possible sources of these compounds were suggested.

17.
Mutagenesis ; 35(4): 331-340, 2020 09 12.
Article in English | MEDLINE | ID: mdl-32701136

ABSTRACT

The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.


Subject(s)
DNA Damage , Leukocytes/drug effects , Nanocomposites/toxicity , Occupational Exposure/adverse effects , Adult , Comet Assay , DNA/drug effects , DNA/metabolism , DNA-Formamidopyrimidine Glycosylase , Deoxyribonuclease (Pyrimidine Dimer) , Escherichia coli Proteins , Female , Humans , Leukocytes/metabolism , Male , Middle Aged , Mutagens , Oxidative Stress , Sex Factors , Young Adult
18.
Environ Sci Pollut Res Int ; 27(31): 38631-38643, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32623683

ABSTRACT

The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM0.15-1.15 chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 µm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM0.15-1.15 sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM0.15-1.15. In Radvanice, local residential combustion and the metallurgical industry were the most important PM0.15-1.15 sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Aerosols/analysis , Cities , Czech Republic , Environmental Monitoring , Particle Size , Particulate Matter/analysis
19.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244494

ABSTRACT

The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.


Subject(s)
DNA Methylation/drug effects , Nanoparticles/adverse effects , Occupational Exposure , Adult , Aged , Epigenesis, Genetic , Female , Genome, Human , Humans , Male , Middle Aged , Nanocomposites/adverse effects , Young Adult
20.
Drug Dev Ind Pharm ; 45(10): 1664-1673, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31389270

ABSTRACT

Colistimethate sodium (CMS) for treatment of lung infections in cystic fibrosis patient was transformed into a dry powder for inhalation by spray drying. Design of Experiment was applied for understanding the role of the spray-drying process parameters on the critical quality attributes of the CMS spray-dried (SD) powders and agglomerates thereof. Eleven experimental SD microparticle powders were constructed under different process conditions according to a central composite design. The SD microparticles were then agglomerated in soft pellets. Eleven physico-chemical characteristics of SD CMS microparticle powders or agglomerates thereof were selected as critical quality attributes. The yield of SD process was higher than 75%. The emitted fraction of agglomerates from RS01 inhaler was 75-84%, and the fine particle fraction (particles <5 µm) was between 58% and 62%. The quality attributes of CMS SD powders and respective agglomerates that were significantly influenced by spray-drying process parameters were residual solvent and drug content of the SD microparticles as well as bulk density and respirable dose of the agglomerates. These attributes were also affected by the combination of the process variables. The air aspiration rate was found as the most positively influential on drug and solvent content and respirable dose. The residual solvent content significantly influenced the powder bulk properties and aerodynamic behavior of the agglomerates, i.e. quality attributes that govern drug metering in the device and the particles lungs deposition. Agglomerates of CMS SD microparticles, in combination with RS01 DPI, showed satisfactory results in terms of dose emitted and fine particle fraction.


Subject(s)
Colistin/analogs & derivatives , Cystic Fibrosis/drug therapy , Infections/drug therapy , Lung/drug effects , Powders/chemistry , Powders/pharmacology , Administration, Inhalation , Aerosols/chemistry , Aerosols/pharmacology , Colistin/chemistry , Drug Compounding/methods , Dry Powder Inhalers , Humans , Particle Size , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...