Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35161258

ABSTRACT

Species of the genus Aesculus are very attractive woody ornamentals. Their organs contain numerous health-promoting phytochemicals. The most valuable of them-aescin-is used in commercial preparations for the treatment of venous insufficiency. The industrial source of aescin is horse chestnut seeds because the zygotic embryos are the main site of its accumulation. Horse chestnut somatic and zygotic embryos contain similar amount of aescin, hence somatic embryos could be exploited as an alternative source of aescin. Somatic embryogenesis, androgenesis and de novo shoot organogenesis were successfully achieved in several Aesculus species, as well as secondary somatic embryogenesis and shoot organogenesis, which enables mass production of embryos and shoots. In addition, an efficient method for cryopreservation of embryogenic tissue was established, assuring constant availability of the plant material. The developed methods are suitable for clonal propagation of elite specimens selected as the best aescin producers, the most attractive ornamentals or plants resistant to pests and diseases. These methods are also useful for molecular breeding purposes. Thus, in this review, the medicinal uses and a comprehensive survey of in vitro propagation methods established for Aesculus species, as well as the feasibility of in vitro production of aescin, are presented and discussed.

2.
Front Plant Sci ; 12: 709231, 2021.
Article in English | MEDLINE | ID: mdl-34394166

ABSTRACT

Globalization has drastically reduced the number of autochthon apple cultivars in the Serbian market and most of them have nearly disappeared; however, some of these cultivars, such as Petrovaca, Budimka, Kolacara Pozna, and Kozara, have extraordinary quality, good pomological characteristics, and pest and disease resistance. The present study was conducted to develop a protocol for the storage of pollen for further use in the conservation and breeding of these cultivars. Viability and germination of the mature pollen were tested in vitro, at four storage temperatures (20, 4, -20, and -80°C), right after harvest or 1, 2, 3, 4, 5, and 6 months after storage. Differences in fresh pollen viability and germination between cultivars were statistically significant and ranged from 60 to 88% and 59 to 98%, respectively. Fresh pollen of cv. Budimka showed the highest viability and germination in comparison with other cultivars, especially cv. Kozara. Pollen viability and germination decreased over the storage period, and it was the lowest after 6 months of storage at room temperature in all tested cultivars. Storage at 4°C prolonged the pollen viability and germinability of 1-5 fold, depending on the cultivar and treatment duration; however, the pollen longevity of all cultivars was significantly extended when stored at -20 or -80°C. After 6 months, pollen of cv. Budimka stored at -20 and -80°C showed 14-15 fold higher germination rates in relation to pollen storage at room temperature for the same period. The results of the present study suggest that the pollen of these apple cultivars could be efficiently maintained at -20°C and could be further used for breeding purposes, e.g., for crossings between cultivars that flower at different times of the year.

3.
Sci Rep ; 10(1): 19290, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168872

ABSTRACT

High variability in somatic embryo (SE)-forming capacity has previously been observed in several spinach cultivars. Such variability frequently accounted for more variation in embryogenic response of the explants than the factor being investigated. Hence, the variability in embryogenic capacity was examined in the present study at both the population and the single-seedling level, using seeds of spinach cultivar Matador obtained from nine European seed companies. Seed population obtained from Slovenia (Sl) was superior to others, with the highest regeneration frequency (100%) and the highest mean SE number (14.4). A total of 82% of these seedlings had 80-100% of regenerating explants, while in populations with intermediate embryogenic capacity approximately 40% of seedlings had 20-60% of regenerating explants. The explants from the majority of seedlings (52-100%) in the least responsive populations were irresponsive. Furthermore, the explants from Sl seedlings regenerated from 10-20 (43.5%) up to > 20 (27.6%) SEs on average, while the explants from the majority of seedlings belonging to other populations regenerated 1-10 SEs. The present study strongly indicates that the variability of plant material must not be overlooked, because choosing more responsive individuals for one treatment and less responsive ones for another may lead to misinterpretation of the data.


Subject(s)
Biotechnology/methods , Plant Somatic Embryogenesis Techniques , Seeds/physiology , Spinacia oleracea/physiology , Gibberellins , Hydrogen-Ion Concentration , Naphthaleneacetic Acids , Plant Growth Regulators , Plant Leaves , Regeneration , Seedlings , Slovenia , Temperature
4.
J Plant Physiol ; 243: 153055, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31639537

ABSTRACT

Food demands of increasing human population dictate intensification of livestock production, however, environmental stresses could jeopardize producers' efforts. Forage legumes suffer from yield losses and poor nutritional status due to salinity increase of agricultural soils. As tools aimed to reduce negative impacts of biotic or abiotic stresses, proteinase inhibitors (PIs) have been promoted for biotechnological improvements. In order to increase tolerance of Lotus corniculatus L. to salt stress, serine PI, BvSTI, was introduced into this legume using Agrobacterium rhizogenes, with final transformation efficiency of 4.57%. PCR, DNA gel-blot, RT-PCR and in-gel protein activity assays confirmed the presence and activity of BvSTI products in transformed lines. Plants from three selected transgenic lines (21, 73 and 109) showed significant alterations in overall phenotypic appearance, corresponding to differences in BvSTI accumulation. Lines 73 and 109 showed up to 7.3-fold higher number of tillers and massive, up to 5.8-fold heavier roots than in nontransformed controls (NTC). Line 21 was phenotypically similar to NTC, accumulated less BvSTI transcripts and did not exhibit an additional band of recombinant trypsin inhibitor as seen in lines 73 and 109. Exposure of the transgenic lines to NaCl revealed different levels of salt stress susceptibility. The NaCl sensitivity index, based on morphological appearance and chlorophyll concentrations showed that lines 73 and 109 were significantly less affected by salinity than NTC or line 21. High level of BvSTI altered morphology and delayed salt stress related senescence, implicating BvSTI gene as a promising tool for salinity tolerance improvement trials in L. corniculatus.


Subject(s)
Beta vulgaris/physiology , Lotus/physiology , Plant Proteins/genetics , Serine Proteinase Inhibitors/genetics , Agrobacterium/genetics , Beta vulgaris/growth & development , Lotus/growth & development , Plant Proteins/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Salt Tolerance/genetics , Serine Proteinase Inhibitors/metabolism
5.
J Plant Physiol ; 232: 257-269, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30537612

ABSTRACT

Kohlrabi (Brassica oleracea var. gongylodes) is an important vegetable crop that is able to undergo shoot regeneration in culture from intact seedlings in a single-step regeneration process, using cytokinin as the only plant growth regulator. In this work, we present the expression profiles of seven organogenesis-related genes over the time course of shoot regeneration from intact seedlings of kohlrabi cv. Vienna Purple on shoot regeneration media containing trans-zeatin, cis-zeatin, benzyl adenine or thidiazuron. Two auxin transporter genes - PIN3 and PIN4, a cytokinin response regulator - ARR5, two shoot apical meristem-related transcription factors - CUC1 and RGD3, and two cell cycle-related genes - CDKB2;1 and CYCB2;4 - displayed bimodal expression patterns on most cytokinin-containing media when their expression levels were normalized against control plants grown on hormone-free media. The first expression peak corresponded to direct upregulation by cytokinin from the growth media, and the second one reflected transcriptional events related to callus formation and/or acquisition of organogenic competence, corresponding to the shoot regeneration phases that have already been characterized in Arabidopsis thaliana. We demonstrate that the genes involved in the two-step shoot regeneration of Arabidopsis display their expected expression profiles during the single-step shoot regeneration of its close phylogenetic relative kohlrabi confirming the universality of their roles in the distinct phases of the regeneration process in Brassicaceae. The results presented here represent a first step towards genetic characterization of the morphogenetic processes in this important crop species.


Subject(s)
Brassica/metabolism , Genes, Plant , Plant Shoots/growth & development , Seedlings/growth & development , Brassica/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genes, Plant/physiology , Plant Shoots/metabolism , Polymerase Chain Reaction , Seedlings/metabolism , Sequence Analysis, DNA , Transcriptome
6.
Planta ; 244(3): 671-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27116429

ABSTRACT

MAIN CONCLUSION: Potato eukaryotic elongation factor 1A comprises multiple isoforms, some of which are heat-inducible or heat-upregulated and might be important in alleviating adverse effects of heat stress on plant productivity. Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protein that plays a central role in the elongation phase of translation. Some of the non-canonical eEF1A activities might be important in developing plant heat-stress tolerance. In this study, we investigated effects of heat stress (HS) on eEF1A expression at the protein level in potato, a highly heat vulnerable crop. Our results from both the controlled environment and the field have shown that potato eEF1A is a heat-inducible protein of 49.2-kDa with multiple isoforms (5-8). Increase in eEF1A abundance under HS can be mainly attributed to 2-3 basic polypeptides/isoforms. A significant correlation between eEF1A abundance and the potato productivity in the field was observed in two extremely hot years 2011 and 2012. Genomic Southern blot analysis indicated the existence of multiple genes encoding eEF1A in potato. Identification, isolation and utilization of heat-inducible eEF1A genes might be helpful for the development of the heat-tolerant varieties.


Subject(s)
Heat-Shock Response , Peptide Elongation Factor 1/metabolism , Solanum tuberosum/metabolism , Thermotolerance , Biomass , Gene Dosage , Immunoblotting , Infrared Rays , Solanum tuberosum/growth & development , Solanum tuberosum/radiation effects
7.
J Plant Physiol ; 169(12): 1203-11, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22749286

ABSTRACT

We investigated Chenopodium murale transgenic hairy root in vitro culture system as a new tool for allelopathic assays. Transgenic hairy roots were induced by Agrobacterium rhizogenes A4M70GUS from roots, cotyledons, leaves, and internodes of C. murale seedlings. Roots were found to be the best target explants, providing transformation efficiency of up to 11.1%. Established hairy root clones differed in their morphology and growth potential. Molecular characterization of these clones was carried out by PCR, RT-PCR and histochemical GUS analyses. No differences in rol gene expression were observed. Liquid culture system of characterized hairy root clones was maintained for over 2 years. Six hairy root clones were selected for assaying the allelopathic effect of their growth medium against germination and seedling elongation of wheat and lettuce test plants. The inhibitory potential varied depending on the hairy root clone. Some transgenic clones showed significantly higher inhibition compared to wild-type roots. These results revealed that hairy roots as an independent system synthesize some bioactive substances with allelopathic activity and exude them into the growth medium. Concentrations of caffeic, ferulic and p-coumaric acids (0.07-2.85 µmol/L) identified by HPLC analysis in the growth media were at least 1000 times lower than the inhibitory active concentration (5 mmol/L) of pure grade phenolic acids, suggesting that they have a limited role in the allelopathic phenomena of C. murale. The presented hairy root system appears to be a suitable tool for further investigation of the potential and nature of root-mediated allelopathic interference of C. murale.


Subject(s)
Chenopodium/chemistry , Chenopodium/cytology , Culture Techniques/methods , Pheromones/analysis , Plant Roots/chemistry , Plant Roots/cytology , Agrobacterium , Chenopodium/genetics , Clone Cells , Cotyledon , Culture Media , Gene Expression Regulation, Plant , Genetic Variation , Plant Leaves , Plant Roots/growth & development , Plant Roots/microbiology , Plants, Genetically Modified , Seedlings , Transformation, Genetic
8.
Pharm Biol ; 48(5): 563-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20645800

ABSTRACT

Escin, a group of chemically related triterpenic glycosides, is widely used in commercial preparations for the treatment of venous insufficiency. Since the zygotic embryo cotyledons accumulate the highest amount of escin, it is currently extracted from the seeds of horse chestnut, Aesculus hippocastanum L. (Hippocastanaceae), on a large scale. As this material is available during only short period of the year, we studied the possibility of using plant tissue culture to obtain escin. For this purpose, the content of escin in androgenic embryos and hairy root cultures of horse chestnut was studied. Escin content was found to be dependent on the stage of androgenic embryo development and the type of phytoregulator supplemented to the nutritive medium. In the absence of phytoregulators, androgenic embryos at the globular stage of development contained approximately four times less escin than those at the cotyledonary stage. Inclusion of various phytoregulators in the nutritive media stimulated escin production. Among them, 2,4-dichlorophenoxyacetic acid (2,4-D) showed the most pronounced effect, with escin content almost reaching that found in zygotic embryos (6.77% versus 6.96%). Two hairy root clones produced substantial amounts of escin (3.57% and 4.09%), less than zygotic embryos, but higher than cotyledonary embryos on phytoregulator-free medium.


Subject(s)
Aesculus , Androgens/isolation & purification , Escin/isolation & purification , Plant Extracts/isolation & purification , Plant Roots , Seeds , Plant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...