Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672944

ABSTRACT

Lactoperoxidase systems (LPSs) can enhance the microbiological quality of raw milk when there is lack of cooling facilities. In this study, a total of 250 milk samples were collected from farmers, collectors, and factories. Experimental samples were both LPS-activated morning and overnight milk. The samples were tested with several chemical and microbiological tests, such as total bacterial count (TBC), total coliform count (TCC), and Escherichia coli count (EC). Results indicated that all LPS-activated milk samples had a higher quality than all the control samples. For instance, both the morning and overnight farm milk samples had mean TBCs of 5.79 log and 6.55 log cfu/mL, which is significantly (p < 0.05) lower than the control samples' mean TBC of 6.73 log and 7.31 log cfu/mL, respectively. When this was compared with the Ethiopian Standard, 51.4% of morning and 39.5% of overnight farm milk with LPS activation met the acceptable quality, while only 28% of morning and 15.7% of overnight control milk met the standard. Moreover, LPS activation has also significantly improved the shelf life of collectors' raw milk and pasteurized milk at the factories. Therefore, a better hygienic practice with LPS application can be practiced in conditions that lack cooling infrastructure and electricity.

2.
Heliyon ; 9(5): e15922, 2023 May.
Article in English | MEDLINE | ID: mdl-37215861

ABSTRACT

Milk is a nutritionally rich food for humans. However, fulfilling the quality of milk is a major concern for milk factories, nutrient requirements, and public health. The objective of this research was to assess the composition of raw and pasteurized milk and cheese, evaluate change in milk and cheese composition along the value chain, and identify adulteration of milk. A total of 160 composite samples were determined using lactoscan and conventional approved methods along value chain. Results indicate that there were significant (p < 0.05) changes of in milk composition along the value chain in the study regions. The range values were; total solid (8.41-11.7%), protein (2.25-3.06%), fat (2.16-3.17%), lactose (3.33-4.76%), ash (0.52-0.73%), P (62.7-84.2 mg/100 g) and Ca (78.2-109 mg/100 g) of liquid milk were obtained in all regions. Liquid milk was found to be adulterated by water along the value chains in all regions (ranged from 0 to 24.8%). Formalin (4 samples) and starch (1 sample) were detected at farmer's and collectors' respectively. In all regions, there was no significant (p > 0.05) difference in cheese nutritional quality between farmers and retailers. The grand mean for moisture, protein, fat, total ash, Ca, P and pH values were 77.1%, 17.1%, 1.42%, 1.18%, 37.8 mg/100 g, 88.2 mg/100 g and 3.7 respectively. Comparison of liquid products with the Compulsory Ethiopian Standard (CES) indicates that 80.2% for fat, protein, and SNF in raw and pasteurized milk were below the CES. In conclusion, liquid milk had poor nutritional composition and varied along the value chain in the study regions. Moreover, there is milk fraud where all dairy value chain add water into milk and milk consumers are consuming lower nutrients and paying for substandard liquid milk. Therefore, training should be provided to all value chain to improve the quality of milk products and quantification of formalin and other adulterants need to be further studied.

3.
Foods ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36832891

ABSTRACT

Aflatoxin M1 (milk toxin) found in milk is formed from the hepatic biotransformation of AFB1 (aflatoxin B1) and poses a risk to human health when consumed. The risk assessment of AFM1 exposure due to milk consumption is a valuable way to assess health risk. The objective of the present work was to determine an exposure and risk assessment of AFM1 in raw milk and cheese, and it is the first of its kind in Ethiopia. Determination of AFM1 was conducted using an enzyme-linked immunosorbent assay (ELISA). The results indicated that AFM1 was positive in all samples of milk products. The risk assessment was determined using margin of exposure (MOE), estimated daily intake (EDI), hazard index (HI), and cancer risk. The mean EDIs for raw milk and cheese consumers were 0.70 and 0.16 ng/kg bw/day, respectively. Our results showed that almost all mean MOE values were <10,000, which suggests a potential health issue. The mean HI values obtained were 3.50 and 0.79 for raw milk and cheese consumers, respectively, which indicates adverse health effects for large consumers of raw milk. For milk and cheese consumers, the mean cancer risk was 1.29 × 10-6 and 2.9 × 10-6 cases/100,000 person/year, respectively, which indicates a low risk for cancer. Therefore, a risk assessment of AFM1 in children should be investigated further as they consume more milk than adults.

4.
Toxins (Basel) ; 14(4)2022 04 12.
Article in English | MEDLINE | ID: mdl-35448885

ABSTRACT

Milk is a highly nutritious and perfect natural food for humans. However, when lactating animals feed on Aflatoxin B1 (AFB1)-containing feed, the hydroxyl metabolite aflatoxin M1 (AFM1) contaminates the milk and dairy products. The objective of the current study was to assess the level of AFM1 in raw milk, normally pasteurized milk and Ethiopian cottage cheese collected from value chain actors (producers, collectors, processors and retailers). Cross-sectional study and simple random techniques were used to collect primary samples. A total of 160 composite samples was collected; raw milk (n = 64), pasteurized milk (n = 64) and cheese (n = 32) was analyzed. Quantitative analysis of AFM1 was conducted using enzyme-linked immunosorbent assay (ELISA). The results indicate that AFM1 was detected in all milk products. Results along value chains show that the concentration of AFM1 in raw milk from collectors was significantly higher than from producers, and in pasteurized milk from processors and retailers (p < 0.05). However, no significant (p > 0.05) difference was observed in cottage cheese value-chain actors in all regions. Comparison of AFM1 mean values among all dairy products shows that raw milk had a significantly higher concentration of AFM1 followed by pasteurized milk and cottage cheese. However, there was no significant difference between raw and pasteurized milk (p > 0.05). The mean AFM1 contamination in milk products ranged from 0.137 to 0.319 µg/L (mean value 0.285 µg/L). The contamination percentages of AFM1 in raw milk (62.50%), pasteurized milk (67.20%) and cottage cheese (25%) were above the regulatory limit set by the European Union (EU) (0.05 µg/L). According to USA/Ethiopian Standard (US/ES) (0.50 µg/L), 21.87%, 25% and 1% exceeded the regulatory limit for the above products, respectively. The overall prevalence (56.88%) was above the EU regulatory limit and 19.38% over US/ES regulations. Therefore, to provide accurate information about the health risk to consumers, there is a need to conduct risk assessment studies in consumers of milk and dairy products at different age groups.


Subject(s)
Aflatoxin M1 , Cheese , Aflatoxin M1/analysis , Animals , Cheese/analysis , Cross-Sectional Studies , Ethiopia , Female , Food Contamination/analysis , Lactation , Milk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...