Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Diabetes ; 56(4): 1014-24, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17229938

ABSTRACT

The actions of acetylcholine (ACh) on endothelium mainly are mediated through muscarinic receptors, which are members of the G protein-coupled receptor family. In the present study, we show that ACh induces rapid tyrosine phosphorylation and activation of Janus kinase 2 (JAK2) in rat aorta. Upon JAK2 activation, tyrosine phosphorylation of insulin receptor substrate (IRS)-1 is detected. In addition, ACh induces JAK2/IRS-1 and IRS-1/phosphatidylinositol (PI) 3-kinase associations, downstream activation of Akt/protein kinase B, endothelial cell-nitric oxide synthase (eNOS), and extracellular signal-regulated kinase (ERK)-1/2. The pharmacological blockade of JAK2 or PI 3-kinase reduced ACh-stimulated eNOS phosphorylation, NOS activity, and aorta relaxation. These data indicate a new signal transduction pathway for IRS-1/PI 3-kinase/Akt/eNOS activation and ERK1/2 by means of JAK2 tyrosine phosphorylation stimulated by ACh in vessels. Moreover, we demonstrate that in aorta of obese rats (high-fat diet), there is an impairment in the insulin- and ACh-stimulated IRS-1/PI 3-kinase pathway, leading to reduced activation with lower protein levels of eNOS associated with a hyperactivated ERK/mitogen-activated protein kinase pathway. These results suggest that in aorta of obese rats, there not only is insulin resistance but also ACh resistance, probably mediated by a common signaling pathway that controls the activity and the protein levels of eNOS.


Subject(s)
Acetylcholine/pharmacology , Endothelium, Vascular/enzymology , Insulin/pharmacology , Nitric Oxide Synthase Type III/biosynthesis , Obesity/physiopathology , Proto-Oncogene Proteins c-akt/physiology , Receptor, Insulin/physiology , Animals , Dietary Fats , Endothelium, Vascular/drug effects , Energy Intake , Enzyme Induction , Janus Kinase 2/metabolism , Male , Obesity/enzymology , Rats , Rats, Mutant Strains , Rats, Wistar , Signal Transduction
2.
Endocrinology ; 144(12): 5604-14, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12960006

ABSTRACT

Insulin and angiotensin II (AngII) may act through overlapping intracellular pathways to promote cardiac myocyte growth. In this report insulin and AngII signaling, through the phosphatidylinositol 3-kinase (PI 3-kinase) and MAPK pathways, were compared in cardiac tissues of control and obese Zucker rats. AngII induced Janus kinase 2 tyrosine phosphorylation and coimmunoprecipitation with insulin receptor substrate 1 (IRS-1) and IRS-2 as well as an increase in tyrosine phosphorylation of IRS and its association with growth factor receptor-binding protein 2. Simultaneous treatment with both hormones led to marked increases in the associations of IRS-1 and -2 with growth factor receptor-binding protein 2 and in the dual phosphorylation of ERK1/2 compared with the administration of AngII or insulin alone. In contrast, an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity was induced by both hormones. Insulin stimulated the phosphorylation of MAPK equally in lean and obese rats. Conversely, insulin-induced phosphorylation of Akt in heart was decreased in obese rats. Pretreatment with losartan did not change insulin-induced activation of ERK1/2 and attenuated the reduction of Akt phosphorylation in the heart of obese rats. Thus, the imbalance between PI 3-kinase-Akt and MAPK signaling pathways in the heart may play a role in the development of cardiovascular abnormalities observed in insulin-resistant states, such as in obese Zucker rats.


Subject(s)
Adaptor Proteins, Signal Transducing , Angiotensin II/metabolism , Hypoglycemic Agents/metabolism , Insulin Resistance/physiology , Insulin/metabolism , MAP Kinase Signaling System/physiology , Myocardium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Vasoconstrictor Agents/metabolism , Angiotensin II/pharmacology , Animals , GRB2 Adaptor Protein , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Janus Kinase 2 , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Obesity/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar , Rats, Zucker , Receptor Cross-Talk/physiology , Vasoconstrictor Agents/pharmacology
3.
Arq. bras. endocrinol. metab ; 46(4): 419-425, ago. 2002. ilus
Article in Portuguese | LILACS | ID: lil-322182

ABSTRACT

A insulina é um hormônio anabólico com efeitos metabólicos potentes. Os eventos que ocorrem após a ligaçäo da insulina säo específicos e estritamente regulados. Definir as etapas que levam à especificidade deste sinal representa um desafio para as pesquisas bioquímicas, todavia podem resultar no desenvolvimento de novas abordagens terapêuticas para pacientes que sofrem de estados de resistência à insulina, inclusive o diabetes tipo 2. O receptor de insulina pertence a uma família de receptores de fatores de crescimento que têm atividade tirosina quinase intrínseca. Após a ligaçäo da insulina o receptor sofre autofosforilaçäo em múltiplos resíduos de tirosina. Isto resulta na ati-vaçäo da quinase do receptor e conseqüente fosforilaçäo em tirosina de um a família de substratos do receptor de insulina (IRS). Deforma similar a outros fatores de crescimento, a insulina usa fosforilaçäo e interações proteína-proteína como ferramentas essenciais para transmitir o sinal. Estas interações proteína-proteína säo fundamentais para transmitir o sinal do receptor em direçäo ao efeito celular final, tais como translocaçäo de vesículas contendo transportadores de glicose (GLUT4) do pool intracelular para a membrana plasmática, ativaçäo da síntese de glicogênio e de proteínas, e transcriçäo de genes específicos.


Subject(s)
Hypoglycemic Agents/metabolism , Insulin , Signal Transduction , Phosphorylation , Insulin Resistance , Protein-Tyrosine Kinases , Receptor Protein-Tyrosine Kinases , Receptor, Insulin , Substrates for Biological Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...