Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Science ; 377(6602): 204-208, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35857537

ABSTRACT

Maximizing the utilization of noble metals is crucial for applications such as catalysis. We found that the minimum loading of platinum for optimal performance in the hydroconversion of n-alkanes for industrially relevant bifunctional catalysts could be reduced by a factor of 10 or more through the rational arranging of functional sites at the nanoscale. Intentionally depositing traces of platinum nanoparticles on the alumina binder or the outer surface of zeolite crystals, instead of inside the zeolite crystals, enhanced isomer selectivity without compromising activity. Separation between platinum and zeolite acid sites preserved the metal and acid functions by limiting micropore blockage by metal clusters and enhancing access to metal sites. Reduced platinum nanoparticles were more active than platinum single atoms strongly bonded to the alumina binder.

2.
ACS Catal ; 11(7): 3842-3855, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33833901

ABSTRACT

The preparation of zeolite-based bifunctional catalysts with low noble metal loadings while maintaining optimal performance has been studied. We have deposited 0.03 to 1.0 wt % Pt on zeolite H-USY (Si/Al ∼ 30 at./at.) using either platinum(II) tetraammine nitrate (PTA, Pt(NH3)4(NO3)2) or hexachloroplatinic(IV) acid (CPA, H2PtCl6·6H2O) and studied the nanoscale Pt loading heterogeneities and global hydroconversion performance of the resulting Pt/Y catalysts. Pt/Y samples prepared with PTA and a global Pt loading as low as 0.3 wt % Pt (n Pt/n A = 0.08 mol/mol, where nPt is the number of Pt surface sites and n A is the number of acid sites) maintained catalytic performance during n-heptane (T = 210-350 °C, P = 10 bar) as well as n-hexadecane (T = 170-280 °C, P = 5 bar) hydroisomerization similar to a 1.0 wt % Pt sample. For Pt/Y catalysts prepared with CPA, a loading of 0.3 wt % Pt (n Pt/n A = 0.08 mol/mol) sufficed for n-heptane hydroisomerization, whereas a detrimental effect on n-hexadecane hydroisomerization was observed, in particular undesired secondary cracking occurred to a significant extent. The differences between PTA and CPA are explained by differences in Pt loading per zeolite Y crystal (size ∼ 500 nm), shown from extensive transmission electron microscopy energy-dispersive X-ray spectroscopy experiments, whereby crystal-based n Pt/n A ratios could be determined. From earlier studies, it is known that the Al content per crystal of USY varied tremendously and that PTA preferentially is deposited on crystals with higher Al content due to ion-exchange with zeolite protons. Here, we show that this preferential deposition of PTA on Al-rich crystals led to a more constant value of n Pt/n A ratio from one zeolite crystal to another, which was beneficial for catalytic performance. Use of CPA led to a large variation of Pt loading independent of Al content, giving rise to larger variations of n Pt/n A ratio from crystal to crystal that negatively affected the catalytic performance. This study thus shows the impact of local metal loading variations at the zeolite crystal scale (nanoscale) caused by different interactions of metal precursors with the zeolite, which are essential to design and synthesize optimal catalysts, in particular at low noble metal loadings.

3.
ACS Catal ; 10(23): 14245-14257, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33312750

ABSTRACT

In this study, Pt nanoparticles on zeolite/γ-Al2O3 composites (50/50 wt) were located either in the zeolite or on the γ-Al2O3 binder, hereby varying the average distance (intimacy) between zeolite acid sites and metal sites from "closest" to "nanoscale". The catalytic performance of these catalysts was compared to physical mixtures of zeolite and Pt/γ-Al2O3 powders, which provide a "microscale" distance between sites. Several beneficial effects on catalytic activity and selectivity for n-heptane hydroisomerization were observed when Pt nanoparticles are located on the γ-Al2O3 binder in nanoscale proximity with zeolite acid sites, as opposed to Pt nanoparticles located inside zeolite crystals. On ZSM-5-based catalysts, mostly monobranched isomers were produced, and the isomer selectivity of these catalysts was almost unaffected with an intimacy ranging from closest to microscale, which can be attributed to the high diffusional barriers of branched isomers within ZSM-5 micropores. For composite catalysts based on large-pore zeolites (zeolite Beta and zeolite Y), the activity and selectivity benefitted from the nanoscale intimacy with Pt, compared to both the closest and microscale intimacies. Intracrystalline gradients of heptenes as reaction intermediates are likely contributors to differences in activity and selectivity. This paper aims to provide insights into the influence of the metal-acid intimacy in bifunctional catalysts based on zeolites with different framework topologies.

4.
Chem Mater ; 32(12): 5226-5235, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32595267

ABSTRACT

Using model catalysts with well-defined particle sizes and morphologies to elucidate questions regarding catalytic activity and stability has gained more interest, particularly utilizing colloidally prepared metal(oxide) particles. Here, colloidally synthesized iron oxide nanoparticles (Fe x O y -NPs, size ∼7 nm) on either a titania (Fe x O y /TiO2) or a silica (Fe x O y /SiO2) support were studied. These model catalyst systems showed excellent activity in the Fischer-Tropsch to olefin (FTO) reaction at high pressure. However, the Fe x O y /TiO2 catalyst deactivated more than the Fe x O y /SiO2 catalyst. After analyzing the used catalysts, it was evident that the Fe x O y -NP on titania had grown to 48 nm, while the Fe x O y -NP on silica was still 7 nm in size. STEM-EDX revealed that the growth of Fe x O y /TiO2 originated mainly from the hydrogen reduction step and only to a limited extent from catalysis. Quantitative STEM-EDX measurements indicated that at a reduction temperature of 350 °C, 80% of the initial iron had dispersed over and into the titania as iron species below imaging resolution. The Fe/Ti surface atomic ratios from XPS measurements indicated that the iron particles first spread over the support after a reduction temperature of 300 °C followed by iron oxide particle growth at 350 °C. Mössbauer spectroscopy showed that 70% of iron was present as Fe2+, specifically as amorphous iron titanates (FeTiO3), after reduction at 350 °C. The growth of iron nanoparticles on titania is hypothesized as an Ostwald ripening process where Fe2+ species diffuse over and through the titania support. Presynthesized nanoparticles on SiO2 displayed structural stability, as only ∼10% iron silicates were formed and particles kept the same size during in situ reduction, carburization, and FTO catalysis.

5.
Nanoscale ; 12(20): 11222-11231, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32412032

ABSTRACT

Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture. We found that the association of soft and hard magnetic nanoparticles in the fluid has a considerable influence on their inherent magnetic properties. While the ferrofluid remains in a single phase, magnetic interactions at the nanoscale between both types of particles induce a modification of their respective coercive fields. By connecting the microscopic properties of binary ferrofluids containing small particles, our findings lay the groundwork for the manipulation of magnetic interactions between particles at the nanometer scale in magnetic liquids.

6.
ChemCatChem ; 12(2): 615-622, 2020 Jan 18.
Article in English | MEDLINE | ID: mdl-32064008

ABSTRACT

The location of Pt nanoparticles was studied in Pt/zeolite Y/γ-Al2O3 composite catalysts prepared by H2PtCl6 ⋅ 6H2O (CPA) or Pt(NH3)4(NO3)2 (PTA) as Pt precursors. The aim of this study is to validate findings from Transmission Electron Microscopy (TEM) by using characterization techniques that sample larger amounts of catalyst per measurement. Quantitative X-ray Photoelectron Spectroscopy (XPS) showed that the catalyst prepared with CPA led to a significantly higher Pt/Al atomic ratio than the catalyst prepared with PTA confirming that the 1-2 nm sized Pt nanoparticles in the former catalyst were located on the open and mesoporous γ-Al2O3 component, whereas they were located in the micropores of zeolite Y in the latter. By using infrared spectroscopy, a shift in the absorption band maximum of CO chemisorbed on Pt nanoparticles was observed, which can be attributed to a difference in electronic properties depending on the support of the Pt nanoparticles. Finally, model hydrogenation experiments were performed using ß-phenylcinnamaldehyde, a reactant molecule with low diffusivity in zeolite Y micropores, resulting in a 5 times higher activity for the catalyst prepared by CPA compared to PTA. The combined use of these characterization techniques allow us to draw more robust conclusions on the ability to control the location of Pt nanoparticles by using either CPA or PTA as precursors in zeolite/γ-Al2O3 composite catalyst materials.

7.
J Phys Chem C Nanomater Interfaces ; 124(3): 2202-2212, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-32010421

ABSTRACT

Nanoparticle growth has long been a significant challenge in nanotechnology and catalysis, but the lack of knowledge on the fundamental nanoscale aspects of this process has made its understanding and prediction difficult, especially in a liquid phase. In this work, we successfully used liquid-phase transmission electron microscopy (LP-TEM) to image this process in real time at the nanometer scale, using an Au/TiO2 catalyst in the presence of NaCl(aq) as a case study. In situ LP-TEM clearly showed that the growth of Au nanoparticles occurred through a form of Ostwald ripening, whereby particles grew or disappeared, probably via monomer transfer, without clear correlation to particle size in contrast to predictions of classical Ostwald ripening models. In addition, the existence of a significant fraction of inert particles that neither grew nor shrank was observed. Furthermore, in situ transmission electron microscopy (TEM) showed that particle shrinkage was sudden and seemed a stochastic process, while particle growth by monomer attachment was slow and likely the rate-determining step for sintering in this system. Identification and understanding of these individual nanoparticle events are critical for extending the accuracy and predictive power of Ostwald ripening models for nanomaterials.

8.
Angew Chem Int Ed Engl ; 59(9): 3592-3600, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-31863705

ABSTRACT

Improving product selectivity by controlling the spatial organization of functional sites at the nanoscale is a critical challenge in bifunctional catalysis. We present a series of composite bifunctional catalysts consisting of one-dimensional zeolites (ZSM-22 and mordenite) and a γ-alumina binder, with platinum particles controllably deposited either on the alumina binder or inside the zeolite crystals. The hydroisomerization of n-heptane demonstrates that the catalysts with platinum particles on the binder, which separates platinum and acid sites at the nanoscale, leads to a higher yield of desired isomers than catalysts with platinum particles inside the zeolite crystals. Platinum particles within the zeolite crystals impose pronounced diffusion limitations on reaction intermediates, which leads to secondary cracking reactions, especially for catalysts with narrow micropores or large zeolite crystals. These findings extend the understanding of the "intimacy criterion" for the rational design of bifunctional catalysts for the conversion of low-molecular-weight reactants.

9.
ChemCatChem ; 11(16): 4081-4088, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31598185

ABSTRACT

Preparing catalysts with highly dispersed metal nanoparticles and narrow particle size distribution has been in the focus of numerous studies. Besides size and size distribution, the location of metal nanoparticles within and local metal loading of the support can have significant impact on catalytic performance. This study revealed that great variations in Pt loading between individual Pt/zeolite Y crystals occurred irrespective of the metal deposition method, namely ion-exchange (IE) or incipient wetness impregnation (IWI). The variation in Pt loading was found to be directly related to different Si/Al ratios of individual zeolite crystals. Results indicate that this Si/Al variation was likely induced by post-synthesis treatments, commonly performed to introduce mesoporosity. In view of the great importance of zeolite-based catalysts for oil refining, understanding the origin of such metal loading heterogeneities may lead to further improvement of zeolite-based catalytic performance.

10.
ACS Catal ; 8(11): 10581-10589, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30416841

ABSTRACT

Colloidal synthesis of nanocrystals (NC) followed by their attachment to a support and activation is a promising route to prepare model catalysts for research on structure-performance relationships. Here, we investigated the suitability of this method to prepare well-defined Co/TiO2 and Co/SiO2 catalysts for the Fischer-Tropsch (FT) synthesis with high control over the cobalt particle size. To this end, Co-NC of 3, 6, 9, and 12 nm with narrow size distributions were synthesized and attached uniformly on either TiO2 or SiO2 supports with comparable morphology and Co loadings of 2-10 wt %. After activation in H2, the FT activity of the TiO2-supported 6 and 12 nm Co-NC was similar to that of a Co/TiO2 catalyst prepared by impregnation, showing that full activation was achieved and relevant catalysts had been obtained; however, 3 nm Co-NC on TiO2 were less active than anticipated. Analysis after FT revealed that all Co-NC on TiO2 as well as 3 nm Co-NC on SiO2 had grown to ∼13 nm, while the sizes of the 6 and 9 nm Co-NC on SiO2 had remained stable. It was found that the 3 nm Co-NC on TiO2 already grew to 10 nm during activation in H2. Furthermore, substantial amounts of Co (up to 60%) migrated from the Co-NC to the support during activation on TiO2 against only 15% on SiO2. We showed that the stronger interaction between cobalt and TiO2 leads to enhanced catalyst restructuring as compared to SiO2. These findings demonstrate the potential of the NC-based method to produce relevant model catalysts to investigate phenomena that could not be studied using conventionally synthesized catalysts.

11.
Ultramicroscopy ; 193: 97-103, 2018 10.
Article in English | MEDLINE | ID: mdl-29960259

ABSTRACT

In-situ transmission electron microscopy experiments are of great interest to nanoscience and nanotechnology. However, it is known that the electron beam can have a significant impact on the structure of the sample which makes it important to carefully interpret in-situ data. In this work, we studied the thermal stability of CTAB-stabilized gold nanorods under different gaseous environments in an environmental transmission electron microscope and compared the outcome to ex-situ heating experiments. We observed a remarkable influence of the electron beam: While the nanorods were stable under inert conditions when exposed to the electron beam even at 400°C, the same nanorods reshaped at temperatures as low as 100°C under ex-situ conditions. We ascribe the stabilizing effect to the transformation of the CTAB bi-layer into a thin carbon layer under electron beam irradiation, preventing the nanorods from deforming. When exposed to an oxidizing environment in the environmental transmission electron microscope, this carbon layer was gradually removed and the gold atoms became mobile allowing for the deformation of the rod. This work highlights the importance of understanding the phenomena taking place under electron beam irradiation, which can greatly affect in-situ experiments and conclusions drawn from these. It stresses that in-situ electron microscopy data, taken on measuring the temperature dependence of nanoparticle properties, should be carefully assessed and accompanied by ex-situ experiments if possible.

12.
ChemCatChem ; 10(7): 1552-1555, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29780433

ABSTRACT

The effects of the metal deposition and activation methods on metal particle size and distribution were investigated for carbon nanotube supported Pd catalysts. The Pd precursor was loaded by incipient wetness impregnation, ion adsorption, and deposition precipitation and was activated by thermal treatment under a nitrogen atmosphere or in the liquid phase by reduction by formaldehyde or sodium borohydride. Regardless of the metal precursor loading method, activation under a N2 atmosphere at 500 °C led to homogeneously distributed 4 nm Pd particles. Liquid-phase reduction by sodium borohydride provided a bimodal distribution with particle sizes of approximately 1 and >10 nm. A somewhat weaker reducing agent, formaldehyde, yielded particles approximately 1 nm in size. The activities of the catalysts for the hydrogenation of cinnamaldehyde correlated with the particle sizes.

13.
Nat Commun ; 8(1): 1680, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29162823

ABSTRACT

The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

14.
Sci Rep ; 7: 40207, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106047

ABSTRACT

Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.

15.
Small ; 13(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27735131

ABSTRACT

Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid.

16.
Nat Mater ; 16(1): 7-8, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27994239
17.
Nature ; 528(7581): 245-8, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26659185

ABSTRACT

The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

18.
Angew Chem Int Ed Engl ; 54(40): 11804-8, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26259539

ABSTRACT

The properties of many functional materials depend critically on the spatial distribution of an active phase within a support. In the case of solid catalysts, controlling the spatial distribution of metal (oxide) nanoparticles at the mesoscopic scale offers new strategies to tune their performance and enhance their lifetimes. However, such advanced control requires suitable characterization methods, which are currently scarce. Here, we show how the background in small-angle X-ray scattering patterns can be analyzed to quantitatively access the mesoscale distribution of nanoparticles within supports displaying hierarchical porosity. This is illustrated for copper catalysts supported on meso- and microporous silica displaying distinctly different metal distributions. Results derived from X-ray scattering are in excellent agreement with electron tomography. Our strategy opens unprecedented prospects for understanding the properties and to guide the synthesis of a wide array of functional nanomaterials.

19.
Chem Soc Rev ; 44(20): 7234-61, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26007224

ABSTRACT

Recently the concept of hierarchical zeolites invoked more explicit attention to enhanced accessibility of zeolites. By realizing additional meso-/macroporosity with the intrinsic microporosity of zeolites, a hierarchical pore system arises which facilitates mass transport while maintaining the zeolite shape selectivity. A great number of synthesis strategies have been developed for tailoring the pore architecture of hierarchical zeolites. In this review, we give a general overview of different synthesis methods for introduction of additional porosity. Advantages and limitations of these different synthesis approaches are addressed. The assessment of pore structure is essential to build the link between the zeolite pore structure and its functionality. A variety of 2D and 3D microscopy techniques are crucial to visualize the hierarchical pore structure, providing unique and comprehensive information that, however, should be linked to the results of bulk characterization techniques as much as possible. The microscopy techniques are classified and discussed according to the different probes used, such as optical light, X-rays and electrons. Representative work is reviewed to elucidate the capability of each technique and their drawbacks.

20.
ACS Nano ; 7(4): 3698-705, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23521107

ABSTRACT

To develop structure-performance relationships for important catalysts, a detailed characterization of their morphology is essential. Using electron tomography, we determined in three dimensions the structure of Pt/zeolite Y bifunctional catalysts. Optimum experimental conditions enabled for the first time high-resolution 3D imaging of Pt particles as small as 1 nm located inside zeolite micropores. Semiautomated image analysis of 3D reconstructions provided an efficient study of numbers, size distributions, and interparticle distances of thousands of Pt particles within individual zeolite crystals. Upon extending this approach to a number of zeolite crystals of one batch of Pt/zeolite Y catalyst, heterogeneities were revealed. The Pt loading, an important parameter for catalyst performance, varied between zeolite crystals up to a factor of 35. This discovery calls for re-evaluation of catalyst preparation methods and suggests potential for lowering the nominal loading with noble metals.


Subject(s)
Electron Microscope Tomography/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Platinum/chemistry , Zeolites/chemistry , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...