Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 38(1): 154-170, 2023 01.
Article in English | MEDLINE | ID: mdl-36350089

ABSTRACT

Osteoarthritis (OA) is characterized by progressive, irreversible erosion of articular cartilage accompanied by severe pain and immobility. This study aimed to assess the effect and mechanism of action of HU308, a selective cannabinoid receptor type 2 (CB2) agonist, in preventing OA-related joint damage. To test the assumption that HU308 could prevent OA-related joint damage, Cnr2 null mice and wild type (WT) mice were aged to reach 20 months and analyzed for joint structural features. OA was induced in WT mice via a post-traumatic procedure or aging, followed by HU308 local (intra-articular) or systemic (intraperitoneal) administration, respectively. Additional analyses of time and dose courses for HU308 were carried out in human primary chondrocytes, analyzed by RNA sequencing, RT-PCR, chromatin immunoprecipitation, and immunoblotting. Our results showed that Cnr2 null mice exhibited enhanced age-related OA severity and synovitis compared to age-matched WT mice. Systemic administration of HU308 to 16-month-old mice improved pain sensitivity and maintained joint integrity, which was consistent with the intra-articular administration of HU308 in post-traumatic OA mice. When assessing human chondrocytes treated with HU308, we uncovered a dose- and time-related increase in ACAN and COL2A1 expression, which was preceded by increased SOX9 expression due to pCREB transcriptional activity. Finally, transcriptomic analysis of patient-derived human chondrocytes identified patient subpopulations exhibiting HU308-responsive trends as judged by enhanced SOX9 expression, accompanied by enriched gene networks related to carbohydrate metabolism. Collectively, the results showed that HU308 reduced trauma and age-induced OA via CB2-pCREB dependent activation of SOX9, contributing to augmented gene networks related to carbohydrate metabolism. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cannabinoids , Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , Aged , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cannabinoids/pharmacology , Pain/metabolism , Mice, Knockout , Carbohydrate Metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/pharmacology
2.
Proc Natl Acad Sci U S A ; 119(21): e2116855119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35594394

ABSTRACT

Cartilage mineralization is a tightly controlled process, imperative for skeletal growth and fracture repair. However, in osteoarthritis (OA), cartilage mineralization may impact the joint range of motion, inflict pain, and increase chances for joint effusion. Here we attempt to understand the link between inflammation and cartilage mineralization by targeting Sirtuin 1 (SIRT1) and lymphoid enhancer binding factor 1 (LEF1), both reported to have contrasting effects on cartilage. We find that inflammatory-dependent cleavage of SIRT1 or its cartilage-specific genetic ablation, directly enhanced LEF1 expression accompanied by a catabolic response. Applying a posttraumatic OA (PTOA) model to cartilage-specific Sirt1 nulls displayed severe OA, which was accompanied by synovitis, meniscal mineralization, and osteophyte formation of the lateral joint compartment. Alternatively, cartilage-specific Lef1 nulls presented reduced lateral mineralization, OA severity, and local pain. Differential gene expression analysis revealed that Lef1 ablation reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like receptor (Tlr) pathways, while enhancing SRY-Box transcription factor 9 (Sox9) and cartilaginous extracellular matrix genes. The results support a link between inflammation and Lef1-dependent cartilage mineralization, mediated by the inactivation of Sirt1. By ablating Lef1 in a PTOA model, the structural and pain-related phenotypes of OA were reduced, in part, by preventing cartilage mineralization of the lateral joint compartment, partially manifested by meniscal tissue mineralization. Overall, these data provide a molecular axis to link between inflammation and cartilage in a PTOA model.


Subject(s)
Calcinosis , Cartilage, Articular , Osteoarthritis , Synovitis , Calcinosis/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Humans , Inflammation , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Pain , Synovitis/genetics , Synovitis/pathology
3.
Aging Cell ; 21(3): e13568, 2022 03.
Article in English | MEDLINE | ID: mdl-35166017

ABSTRACT

Mammalian oocyte quality reduces with age. We show that prior to the occurrence of significant aneuploidy (9M in mouse), heterochromatin histone marks are lost, and oocyte maturation is impaired. This loss occurs in both constitutive and facultative heterochromatin marks but not in euchromatic active marks. We show that heterochromatin loss with age also occurs in human prophase I-arrested oocytes. Moreover, heterochromatin loss is accompanied in mouse oocytes by an increase in RNA processing and associated with an elevation in L1 and IAP retrotransposon expression and in DNA damage and DNA repair proteins nuclear localization. Artificial inhibition of the heterochromatin machinery in young oocytes causes an elevation in retrotransposon expression and oocyte maturation defects. Inhibiting retrotransposon reverse-transcriptase through azidothymidine (AZT) treatment in older oocytes partially rescues their maturation defects and activity of the DNA repair machinery. Moreover, activating the heterochromatin machinery via treatment with the SIRT1 activating molecule SRT-1720, or overexpression of Sirt1 or Ezh2 via plasmid electroporation into older oocytes causes an upregulation in constitutive heterochromatin, downregulation of retrotransposon expression, and elevated maturation rates. Collectively, our work demonstrates a significant process in oocyte aging, characterized by the loss of heterochromatin-associated chromatin marks and activation of specific retrotransposons, which cause DNA damage and impair oocyte maturation.


Subject(s)
Heterochromatin , Retroelements , Animals , Heterochromatin/genetics , Heterochromatin/metabolism , Mammals/genetics , Meiosis , Mice , Oocytes/metabolism , Oogenesis , Retroelements/genetics , Sirtuin 1/metabolism
4.
Front Cell Dev Biol ; 10: 1060440, 2022.
Article in English | MEDLINE | ID: mdl-36704200

ABSTRACT

Pre-pubertal oocytes are still dormant. They are arrested in a GV state and do not undergo meiotic divisions naturally. A multitude of molecular pathways are changed and triggered upon initiation of puberty. It is not yet clear which epigenetic events occur in oocytes upon pubertal transition, and how significant these epigenetic events may be. We evaluated epigenetic marker levels in mouse pre-pubertal and post-pubertal female oocytes. In addition, we evaluated H3K9me2 levels in human oocytes collected from fertility preservation patients, comparing the levels between pre-pubertal patients and post-pubertal patients. The chromatin structure shows a lower number of chromocenters in mouse post-pubertal oocytes in comparison to pre-pubertal oocytes. All heterochromatin marker levels checked (H3K9me2, H3K27me3, H4K20me1) significantly rise across the pubertal transition. Euchromatin markers vary in their behavior. While H3K4me3 levels rise with the pubertal transition, H3K27Ac levels decrease with the pubertal transition. Treatment with SRT1720 [histone deacetylase (HDAC) activator] or overexpression of heterochromatin factors does not lead to increased heterochromatin in pre-pubertal oocytes. However, treatment of pre-pubertal oocytes with follicle-stimulating hormone (FSH) for 24 h - changes their chromatin structure to a post-pubertal configuration, lowers the number of chromocenters and elevates their histone methylation levels, showing that hormones play a key role in chromatin regulation of pubertal transition. Our work shows that pubertal transition leads to reorganization of oocyte chromatin and elevation of histone methylation levels, thus advancing oocyte developmental phenotype. These results provide the basis for finding conditions for in-vitro maturation of pre-pubertal oocytes, mainly needed to artificially mature oocytes of young cancer survivors for fertility preservation purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...