Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Science ; 384(6692): 227-232, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38603484

ABSTRACT

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.


Subject(s)
DNA Gyrase , DNA, Superhelical , DNA , Escherichia coli Proteins , Escherichia coli , Cryoelectron Microscopy , DNA/chemistry , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Domains
2.
Eur Biophys J ; 52(4-5): 267-280, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37501021

ABSTRACT

To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.


Subject(s)
DNA, Superhelical , DNA , Reproducibility of Results , DNA, Circular , Ultracentrifugation
3.
Nucleic Acids Res ; 51(8): 4027-4042, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36971110

ABSTRACT

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.


Subject(s)
DNA, Superhelical , Hydrodynamics , DNA , Nucleic Acid Conformation
4.
Access Microbiol ; 5(2): acmi000421, 2023.
Article in English | MEDLINE | ID: mdl-36919079

ABSTRACT

Members of the order Enterobacterales, including Escherichia coli , Klebsiella species and Enterobacter species, are important pathogens in healthcare-associated infections. Higher mortality has been reported from infections due to Klebsiella pneumoniae than from E. coli , but prior studies comparing Enterobacter aerogenes (recently renamed Klebsiella aerogenes ) bacteraemia and Enterobacter cloacae complex bacteraemia have yielded conflicting results regarding whether clinical outcomes differ. We found bacteraemia with K. aerogenes was independently associated with greater risk of 30-day mortality than bacteraemia with Enterobacter cloacae complex.

5.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36711572

ABSTRACT

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.

6.
Front Immunol ; 13: 823652, 2022.
Article in English | MEDLINE | ID: mdl-35422803

ABSTRACT

Respiratory Syncytial Virus (RSV) is ubiquitous and re-infection with both subtypes (RSV/A and RSV/B) is common. The fusion (F) protein of RSV is antigenically conserved, induces neutralizing antibodies, and is a primary target of vaccine development. Insight into the breadth and durability of RSV-specific adaptive immune response, particularly to the F protein, may shed light on susceptibility to re-infection. We prospectively enrolled healthy adult subjects (n = 19) and collected serum and peripheral blood mononuclear cells (PBMCs) during the 2018-2019 RSV season. Previously, we described their RSV-specific antibody responses and identified three distinct antibody kinetic profiles associated with infection status: uninfected (n = 12), acutely infected (n = 4), and recently infected (n = 3). In this study, we measured the longevity of RSV-specific memory T cell responses to the F protein following natural RSV infection. We stimulated PBMCs with overlapping 15-mer peptide libraries spanning the F protein derived from either RSV/A or RSV/B and found that memory T cell responses mimic the antibody responses for all three groups. The uninfected group had stable, robust memory T cell responses and polyfunctionality. The acutely infected group had reduced polyfunctionality of memory T cell response at enrollment compared to the uninfected group, but these returned to comparable levels by end-of-season. The recently infected group, who were unable to maintain high levels of RSV-specific antibody following infection, similarly had decreased memory T cell responses and polyfunctionality during the RSV season. We observed subtype-specific differences in memory T cell responses and polyfunctionality, with RSV/A stimulating stronger memory T cell responses with higher polyfunctionality even though RSV/B was the dominant subtype in circulation. A subset of individuals demonstrated an overall deficiency in the generation of a durable RSV-specific adaptive immune response. Because memory T cell polyfunctionality may be associated with protection against re-infection, this latter group would likely be at greater risk of re-infection. Overall, these results expand our understanding of the longevity of the adaptive immune response to the RSV fusion protein and should be considered in future vaccine development efforts.


Subject(s)
Leukocytes, Mononuclear , Respiratory Syncytial Virus, Human , Adult , Antibodies, Viral , Humans , Memory T Cells , Reinfection , Seasons
7.
Vaccine ; 40(3): 536-543, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34903371

ABSTRACT

The respiratory syncytial virus (RSV) fusion (F) protein undergoes two furin-cleavage events to become fusion competent, resulting in the release of a twenty-seven amino acid peptide (p27). Recent studies indicate that the p27 region of the F protein was an immunodominant antigen in young children. In this study, we evaluated the kinetics of the serum antibody response to the p27 peptide following natural RSV reinfection in adults. Nineteen healthy adults under sixty-five years of age were enrolled during the 2018-2019 RSV season in Houston, TX. Blood was collected at three study visits and RSV infection status was defined by changes in neutralizing antibody resulting in three groups: uninfected (n = 12), acutely infected (n = 4), and recently infected (n = 3). Serum IgG and IgA antibodies against RSV/A and RSV/B p27 peptides were measured by enzyme-linked immunosorbent assays, and serum p27-like antibodies were detected by a p27 competitive antibody assay. Anti-p27 antibodies were detected in all subjects at each study visit. The measured IgG and IgA anti-p27 antibody levels followed the same pattern as other RSV site-specific and neutralizing antibody responses described for this cohort previously: the uninfected group had stable responses for the duration of the study period, the acutely infected group had a significant increase following RSV infection, and the recently infected group had a decrease in anti-p27 antibody during the study period. These results indicate that antibodies to the p27 region of the F protein are generated following natural RSV reinfection and suggest that some of the F protein is potentially in a partially cleaved state on the surface of virions, expanding on the previous assumption that all of p27 is post-translationally released and not present on mature F. Additionally, antibody responses were significantly lower (1.4-1.5-fold) toward RSV/B than to RSV/A p27 at each study visit, despite being an RSV/B dominant outbreak. Understanding the mechanism for the differences in the magnitude of the RSV/A and RSV/B p27 antibody response may enhance our understanding of the intracellular processing of the F protein.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Adult , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Child , Child, Preschool , Humans , Peptides , Viral Fusion Proteins
8.
Nat Commun ; 12(1): 5683, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584096

ABSTRACT

DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.


Subject(s)
Base Pairing , DNA, Superhelical/metabolism , Endodeoxyribonucleases/metabolism , DNA Cleavage , DNA Repair , DNA, Superhelical/chemistry , Genomic Instability , Models, Chemical , Models, Genetic , Stress, Mechanical
9.
Vaccine ; 39(8): 1248-1256, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33509697

ABSTRACT

Respiratory syncytial virus (RSV)-specific serum antibody has been correlated to protection of infection and reduction of severe disease, but reinfection is still frequent. In this study, we evaluated RSV-specific serum antibody activity following natural RSV re-infection to examine the longevity of the humoral immune response in adults. Nineteen healthy adult volunteers under sixty-five years of age were enrolled during the 2018-2019 RSV season in Houston, TX. Blood was collected at three study visits. The kinetics of RSV-neutralizing, RSV F site-specific competitive, and RSV-binding antibodies in serum samples were measured by microneutralization and enzyme-linked immunosorbent assays. Three distinct profiles of RSV-specific antibody kinetics were identified that were consistent with RSV infection status: uninfected, acutely infected, and recently infected. The uninfected group had stable antibody titers for the duration of the study period (185 days). The acutely infected group had lower antibody responses at the beginning of the study, supporting a correlate of infection, followed by a significant antibody response after infection that was maintained for at least 125 days. Unlike the acutely infected group, the recently infected group had a significant precipitous decrease in RSV antibody in only 60 days. This study is the first, to our knowledge, to describe this abrupt loss of RSV-specific antibody in detail. This rapid decline of antibody may present an obstacle for the development of vaccines with lasting protection against RSV, and perhaps other respiratory pathogens. Neutralizing antibody responses were greater to prototypic than contemporaneous RSV strains, regardless of infection status, indicating that original antigenic sin may impact the humoral immune response to new or emerging RSV strains.


Subject(s)
Immunity, Humoral , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines , Adult , Antibodies, Neutralizing , Antibodies, Viral , Humans , Kinetics , Prospective Studies , Respiratory Syncytial Virus, Human , Texas/epidemiology , Viral Fusion Proteins/immunology
10.
Cell Gene Ther Insights ; 6(10): 1489-1505, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33953961

ABSTRACT

The tragic deaths of three patients in a recent AAV-based X-linked myotubular myopathy clinical trial highlight once again the pressing need for safe and reliable gene delivery vectors. Non-viral minimized DNA vectors offer one possible way to meet this need. Recent pre-clinical results with minimized DNA vectors have yielded promising outcomes in cancer therapy, stem cell therapy, stem cell reprograming, and other uses. Broad clinical use of these vectors, however, remains to be realized. Further advances in vector design and production are ongoing. An intriguing and promising potential development results from manipulation of the specific shape of non-viral minimized DNA vectors. By improving cellular uptake and biodistribution specificity, this approach could impact gene therapy, DNA nanotechnology, and personalized medicine.

11.
PLoS One ; 14(1): e0210547, 2019.
Article in English | MEDLINE | ID: mdl-30633761

ABSTRACT

New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciclopirox/pharmacology , Escherichia coli/drug effects , Iron/metabolism , Sugars/analysis , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Antifungal Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Enterobactin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Galactose/metabolism , Genes, Bacterial/genetics , Klebsiella/drug effects , Klebsiella/genetics , Klebsiella/metabolism , Microbial Sensitivity Tests , Mutation , Siderophores/metabolism
12.
Technol Innov ; 20(4): 427-439, 2019 Aug.
Article in English | MEDLINE | ID: mdl-33815681

ABSTRACT

Supercoiling affects every aspect of DNA function (replication, transcription, repair, recombination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochemical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or "P-DNA"). These structural changes strongly influence how enzymes interact with or act on DNA. We hypothesized that, because of their small size and lack of bacterial sequences, these small supercoiled DNA circles may be efficient at delivering DNA into cells for gene therapy applications. "Minivectors," as we named them for this application, have proven to have therapeutic potential. We discovered that minivectors efficiently transfect a wide range of cell types, including many clinically important cell lines that are refractory to transfection with conventional plasmid vectors. Minivectors can be aerosolized for delivery to lungs and transfect human cells in culture to express RNA or genes. Importantly, minivectors demonstrate no obvious vector-associated toxicity. Minivectors can be repeatedly delivered and are long-lasting without integrating into the genome. Requests from colleagues around the world for minicircle and minivector DNA revealed a demand for our invention. We successfully obtained start-up funding for Twister Biotech, Inc. to help fulfill this demand, providing DNA for those who needed it, with a long-term goal of developing human therapeutics. In summary, what started as a tool for studying DNA structure has taken us in new and unanticipated directions.

14.
Nucleic Acids Res ; 46(2): 861-872, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29253195

ABSTRACT

DNA topoisomerases are essential enzymes involved in all the DNA processes and among them, type IA topoisomerases emerged as a key actor in the maintenance of genome stability. The hyperthermophilic archaeon, Sulfolobus solfataricus, contains three topoisomerases IA including one classical named TopA. SsoTopA is very efficient at unlinking DNA catenanes, grouping SsoTopA into the topoisomerase III family. SsoTopA is active over a wide range of temperatures and at temperatures of up to 85°C it produces highly unwound DNA. At higher temperatures, SsoTopA unlinks the two DNA strands. Thus depending on the temperature, SsoTopA is able to either prevent or favor DNA melting. While canonical topoisomerases III require a single-stranded DNA region or a nick in one of the circles to decatenate them, we show for the first time that a type I topoisomerase, SsoTopA, is able to efficiently unlink covalently closed catenanes, with no additional partners. By using single molecule experiments we demonstrate that SsoTopA requires the presence of a short single-stranded DNA region to be efficient. The unexpected decatenation property of SsoTopA probably comes from its high ability to capture this unwound region. This points out a possible role of TopA in S. solfataricus as a decatenase in Sulfolobus.


Subject(s)
Archaeal Proteins/metabolism , DNA Topoisomerases, Type I/metabolism , DNA, Catenated/metabolism , Sulfolobus solfataricus/enzymology , Archaeal Proteins/genetics , Base Sequence , DNA Topoisomerases, Type I/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , DNA, Catenated/chemistry , DNA, Catenated/genetics , DNA, Concatenated/chemistry , DNA, Concatenated/genetics , DNA, Concatenated/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Hot Temperature , Kinetics , Models, Molecular , Nucleic Acid Conformation , Sulfolobus solfataricus/genetics
15.
PLoS One ; 12(12): e0189384, 2017.
Article in English | MEDLINE | ID: mdl-29206873

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0165729.].

16.
PLoS One ; 12(7): e0180800, 2017.
Article in English | MEDLINE | ID: mdl-28700629

ABSTRACT

Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.


Subject(s)
DNA Ligases/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , DNA Damage/genetics , DNA Ligases/genetics , DNA Replication/genetics , DNA Replication/physiology , Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology
17.
Nucleic Acids Res ; 45(13): 7633-7642, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28609782

ABSTRACT

The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy.


Subject(s)
DNA, Circular/chemistry , DNA, Circular/genetics , Animals , Base Sequence , Biophysical Phenomena , Computer Simulation , Cryoelectron Microscopy , DNA, Circular/ultrastructure , Humans , Models, Molecular , Nucleic Acid Conformation , Static Electricity , Torsion, Mechanical
18.
Genes (Basel) ; 8(2)2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28208635

ABSTRACT

Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.

19.
PLoS One ; 11(12): e0167537, 2016.
Article in English | MEDLINE | ID: mdl-27918590

ABSTRACT

The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.


Subject(s)
DNA, Circular/genetics , Cell Line, Tumor , DNA, Superhelical/genetics , Electroporation/methods , Gene Knockdown Techniques/methods , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , RNA, Small Interfering/genetics , Transfection/methods
20.
PLoS One ; 11(10): e0165729, 2016.
Article in English | MEDLINE | ID: mdl-27788253

ABSTRACT

Influenza virus, a highly infectious ssRNA virus, replicates in the nucleus of host cells. This unusual feature brings the possibility that the virus may hijack host small noncoding RNA metabolism. Influenza small viral RNA production has been examined in vitro but has not yet been studied in an in vivo setting. We assessed small RNA species from influenza virus during mouse infection by mining publicly available mouse small RNA transcriptome data. We uncovered 26 nt reads corresponding to svRNA, a small viral RNA previously detected in vitro that regulates the transition from transcription to replication during infection, and found a strong positive correlation between svRNA production and host susceptibility to influenza virus infection. We also detected significant overrepresentation of a non-coding 23 nt sequence that we speculate may behave like a miRNA and work with influenza protein NS1 to prevent the transcription and maturation of interferon-stimulated mRNAs.


Subject(s)
Orthomyxoviridae/genetics , RNA, Viral/biosynthesis , Transcriptome , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...