Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 216(2): 597-605, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-20826187

ABSTRACT

Reading and speech-in-noise perception, fundamental aspects of human communication, have been linked to neural indices of auditory brainstem function. However, how these factors interact is currently unclear. Multivariate analysis methods (structural equation modeling) were employed to delineate and quantify the relationships among factors that relate to successful reading and speech in noise perception in children. Neural measures of subcortical speech encoding that reflect the utilization of stimulus regularities, differentiation of stop consonants, and robustness of neural synchrony predicted 73% of the variance in reading scores. A different combination of neural measures, specifically, utilization of stimulus regularities, strength of encoding of lower harmonics, and the extent of noise-induced timing delays uniquely predicted 56% of the variance in speech-in-noise perception measures. The neural measures relating to reading and speech-in-noise perception were substantially non-overlapping and resulted in poor fitting models when substituted for each other, thereby suggesting distinct neural signatures for the two skills. When phonological processing and working memory measures were added to the models, brainstem measures still uniquely predicted variance in reading ability and speech-in-noise perception, highlighting the robustness of the relationship between subcortical auditory function and these skills. The current study suggests that objective neural markers may prove valuable in the assessment of reading or speech-in-noise abilities in children.


Subject(s)
Discrimination, Psychological/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Reading , Signal Detection, Psychological , Speech Perception/physiology , Adolescent , Auditory Threshold/physiology , Child , Female , Humans , Male , Memory, Short-Term/physiology , Models, Neurological , Noise , Perceptual Masking , Phonetics , Reference Values , Statistics, Nonparametric , Time Perception/physiology
2.
Dev Sci ; 12(4): 557-67, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19635083

ABSTRACT

Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g. onsets) to specific aspects of neural encoding (e.g. waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population.


Subject(s)
Acoustic Stimulation/psychology , Autistic Disorder/psychology , Brain Stem/physiology , Language Development Disorders/psychology , Speech Perception/physiology , Speech/physiology , Adolescent , Child , Female , Humans , Male , Phonetics
SELECTION OF CITATIONS
SEARCH DETAIL
...