Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
J Neurol ; 271(5): 2844-2849, 2024 May.
Article in English | MEDLINE | ID: mdl-38353747

ABSTRACT

BACKGROUND: Disconjugate eye movements are essential for depth perception in frontal-eyed species, but their underlying neural substrates are largely unknown. Lesions in the midbrain can cause disconjugate eye movements. While vertically disconjugate eye movements have been linked to defective visuo-vestibular integration, the pathophysiology and neuroanatomy of horizontally disconjugate eye movements remains elusive. METHODS: A patient with a solitary focal midbrain lesion was examined using detailed clinical ocular motor assessments, binocular videooculography and diffusion-weighted MRI, which was co-registered to a high-resolution cytoarchitectonic MR-atlas. RESULTS: The patient exhibited both vertically and horizontally disconjugate eye alignment and nystagmus. Binocular videooculography showed a strong correlation of vertical and horizontal oscillations during fixation but not in darkness. Oscillation intensities and waveforms were modulated by fixation, illumination, and gaze position, suggesting shared visual- and vestibular-related mechanisms. The lesion was mapped to a functionally ill-defined area of the dorsal midbrain, adjacent to the posterior commissure and sparing nuclei with known roles in vertical gaze control. CONCLUSION: A circumscribed region in the dorsal midbrain appears to be a key node for disconjugate eye movements in both vertical and horizontal planes. Lesioning this area produces a unique ocular motor syndrome mirroring hallmarks of developmental strabismus and nystagmus. Further circuit-level studies could offer pivotal insights into shared pathomechanisms of acquired and developmental disorders affecting eye alignment.


Subject(s)
Mesencephalon , Humans , Eye Movements/physiology , Mesencephalon/diagnostic imaging , Mesencephalon/physiopathology , Mesencephalon/pathology , Nystagmus, Pathologic/physiopathology , Nystagmus, Pathologic/etiology , Nystagmus, Pathologic/diagnostic imaging , Ocular Motility Disorders/physiopathology , Ocular Motility Disorders/etiology
2.
Front Neurol ; 14: 1255105, 2023.
Article in English | MEDLINE | ID: mdl-38046576

ABSTRACT

Introduction: Patients and technologists commonly describe vertigo, dizziness, and imbalance near high-field magnets, e.g., 7-Tesla (T) magnetic resonance imaging (MRI) scanners. We sought a simple way to alleviate vertigo and dizziness in high-field MRI scanners by applying the understanding of the mechanisms behind magnetic vestibular stimulation and the innate characteristics of vestibular adaptation. Methods: We first created a three-dimensional (3D) control systems model of the direct and indirect vestibulo-ocular reflex (VOR) pathways, including adaptation mechanisms. The goal was to develop a paradigm for human participants undergoing a 7T MRI scan to optimize the speed and acceleration of entry into and exit from the MRI bore to minimize unwanted vertigo. We then applied this paradigm from the model by recording 3D binocular eye movements (horizontal, vertical, and torsion) and the subjective experience of eight normal individuals within a 7T MRI. The independent variables were the duration of entry into and exit from the MRI bore, the time inside the MRI bore, and the magnetic field strength; the dependent variables were nystagmus slow-phase eye velocity (SPV) and the sensation of vertigo. Results: In the model, when the participant was exposed to a linearly increasing magnetic field strength, the per-peak (after entry into the MRI bore) and post-peak (after exiting the MRI bore) responses of nystagmus SPV were reduced with increasing duration of entry and exit, respectively. There was a greater effect on the per-peak response. The entry/exit duration and peak response were inversely related, and the nystagmus was decreased the most with the 5-min duration paradigm (the longest duration modeled). The experimental nystagmus pattern of the eight normal participants matched the model, with increasing entry duration having the strongest effect on the per-peak response of nystagmus SPV. Similarly, all participants described less vertigo with the longer duration entries. Conclusion: Increasing the duration of entry into and exit out of a 7T MRI scanner reduced or eliminated vertigo symptoms and reduced nystagmus peak SPV. Model simulations suggest that central processes of vestibular adaptation account for these effects. Therefore, 2-min entry and 20-s exit durations are a practical solution to mitigate vertigo and other discomforting symptoms associated with undergoing 7T MRI scans. In principle, these findings also apply to different magnet strengths.

3.
World J Gastrointest Endosc ; 15(9): 553-563, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37744319

ABSTRACT

BACKGROUND: Esophageal replacement (ER) with gastric pull-up (GPU) or jejunal interposition (JI) used to be the standard treatment for long-gap esophageal atresia (LGEA). Changes of the ER grafts on a macro- and microscopic level however, are unknown. AIM: To evaluate long-term clinical symptoms and anatomical and mucosal changes in adolescents and adults after ER for LGEA. METHODS: A cohort study was conducted including all LGEA patients ≥ 16 years who had undergone GPU or JI between 1985-2003 at two tertiary referral centers in the Netherlands. Patients underwent clinical assessment, contrast study and endoscopy with biopsy. Data was collected prospectively. Group differences between JI and GPU patients, and associations between different outcome measures were assessed using the Fisher's exact test for bivariate variables and the Mann-Whitney U-test for continuous variables. Differences with a P-value < 0.05 were considered statistically significant. RESULTS: Nine GPU patients and eleven JI patients were included. Median age at follow-up was 21.5 years and 24.4 years, respectively. Reflux was reported in six GPU patients (67%) vs four JI patients (36%) (P = 0.37). Dysphagia symptoms were reported in 64% of JI patients, compared to 22% of GPU patients (P = 0.09). Contrast studies showed dilatation of the jejunal graft in six patients (55%) and graft lengthening in four of these six patients. Endoscopy revealed columnar-lined esophagus in three GPU patients (33%) and intestinal metaplasia was histologically confirmed in two patients (22%). No association was found between reflux symptoms and macroscopic anomalies or intestinal metaplasia. Three GPU patients (33%) experienced severe feeding problems vs none in the JI group. The median body mass index of JI patients was 20.9 kg/m2 vs 19.5 kg/m2 in GPU patients (P = 0.08). CONCLUSION: The majority of GPU patients had reflux and intestinal metaplasia in 22%. The majority of JI patients had dysphagia and a dilated graft. Follow-up after ER for LGEA is essential.

4.
Children (Basel) ; 10(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37371252

ABSTRACT

Esophageal atresia (EA) is a rare birth defect in which respiratory tract disorders are a major cause of morbidity. It remains unclear whether respiratory tract disorders are in part caused by alterations in airway epithelial cell functions such as the activity of motile cilia. This can be studied using airway epithelial cell culture models of patients with EA. Therefore, the aim of this study was to evaluate the feasibility to culture and functionally characterize motile cilia function in the differentiated air-liquid interface cultured airway epithelial cells and 3D organoids derived from nasal brushings and bronchoalveolar lavage (BAL) fluid from children with EA. We demonstrate the feasibility of culturing differentiated airway epithelia and organoids of nasal brushings and BAL fluid of children with EA, which display normal motile cilia function. EA patient-derived airway epithelial cultures can be further used to examine whether alterations in epithelial functions contribute to respiratory disorders in EA.

5.
Pediatr Infect Dis J ; 42(8): 644-647, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37171938

ABSTRACT

BACKGROUND: Esophageal atresia (EA) is most often accompanied by some degree of tracheomalacia (TM), which negatively influences the airway by ineffective clearance of secretions. This can lead to lower airway bacterial colonization (LABC), which may cause recurrent respiratory tract infections (RTIs). This study aims to evaluate the prevalence and specific pathogens of LABC in EA patients. METHODS: A 5-year retrospective single-site cohort study was conducted including all EA patients that had undergone an intraoperative bronchoalveolar lavage (BAL) during various routine surgical interventions. Concentrations of greater than 10 cfu were considered evidence of LABC. RESULTS: We recruited 68 EA patients, of which 12 were excluded based on the exclusion criteria. In the remaining 56 patients, a total of 90 BAL samples were obtained. In 57% of the patients, at least 1 BAL sample was positive for LABC. Respiratory symptoms were reported in 21 patients at the time of the BAL, of which 10 (48%) had LABC. Haemophilus influenzae (14%) and Staphylococcus aureus (16%) were most frequently found in the BAL samples. The number of respiratory tract infections and the existence of a recurrent fistula were significantly associated with LABC ( P = 0.008 and P = 0.04, respectively). CONCLUSIONS: This is the first study showing that patients with EA have a high prevalence of bacterial colonization of the lower airways which may be a leading mechanism of severe and recurrent respiratory complications.


Subject(s)
Esophageal Atresia , Respiratory Tract Infections , Humans , Child , Esophageal Atresia/complications , Esophageal Atresia/surgery , Bronchoalveolar Lavage Fluid/microbiology , Retrospective Studies , Cohort Studies , Respiratory Tract Infections/diagnosis
6.
Ann Neurol ; 94(2): 295-308, 2023 08.
Article in English | MEDLINE | ID: mdl-37038843

ABSTRACT

OBJECTIVE: Acute dizziness/vertigo is usually due to benign inner-ear causes but is occasionally due to dangerous neurologic ones, particularly stroke. Because symptoms and signs overlap, misdiagnosis is frequent and overuse of neuroimaging is common. We assessed the accuracy of bedside findings to differentiate peripheral vestibular from central neurologic causes. METHODS: We performed a systematic search (MEDLINE and Embase) to identify studies reporting on diagnostic accuracy of physical examination in adults with acute, prolonged dizziness/vertigo ("acute vestibular syndrome" [AVS]). Diagnostic test properties were calculated for findings. Results were stratified by examiner type and stroke location. RESULTS: We identified 6,089 citations and included 14 articles representing 10 study cohorts (n = 800). The Head Impulse, Nystagmus, Test of Skew (HINTS) eye movement battery had high sensitivity 95.3% (95% confidence interval [CI] = 92.5-98.1) and specificity 92.6% (95% CI = 88.6-96.5). Sensitivity was similar by examiner type (subspecialists 94.3% [95% CI = 88.2-100.0] vs non-subspecialists 95.0% [95% CI = 91.2-98.9], p = 0.55), but specificity was higher among subspecialists (97.6% [95% CI = 94.9-100.0] vs 89.1% [95% CI = 83.0-95.2], p = 0.007). HINTS sensitivity was lower in anterior cerebellar artery (AICA) than posterior inferior cerebellar artery (PICA) strokes (84.0% [95% CI = 65.3-93.6] vs 97.7% [95% CI = 93.3-99.2], p = 0.014) but was "rescued" by the addition of bedside hearing tests (HINTS+). Severe (grade 3) gait/truncal instability had high specificity 99.2% (95% CI = 97.8-100.0) but low sensitivity 35.8% (95% CI = 5.2-66.5). Early magnetic resonance imaging (MRI)-diffusion-weighted imaging (DWI; within 24-48 hours) was falsely negative in 15% of strokes (sensitivity 85.1% [95% CI = 79.2-91.0]). INTERPRETATION: In AVS, HINTS examination by appropriately trained clinicians can differentiate peripheral from central causes and has higher diagnostic accuracy for stroke than MRI-DWI in the first 24-48 hours. These techniques should be disseminated to all clinicians evaluating dizziness/vertigo. ANN NEUROL 2023;94:295-308.


Subject(s)
Nystagmus, Pathologic , Stroke , Adult , Humans , Dizziness/etiology , Dizziness/complications , Vertigo/diagnosis , Vertigo/etiology , Eye Movements , Nystagmus, Pathologic/complications , Nystagmus, Pathologic/diagnosis , Stroke/complications , Stroke/diagnosis , Acute Disease , Diagnostic Tests, Routine/adverse effects
7.
Transl Vis Sci Technol ; 12(1): 17, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36630147

ABSTRACT

Purpose: The objective of the study is to develop deep learning models using synthetic fundus images to assess the direction (intorsion versus extorsion) and amount (physiologic versus pathologic) of static ocular torsion. Static ocular torsion assessment is an important clinical tool for classifying vertical ocular misalignment; however, current methods are time-intensive with steep learning curves for frontline providers. Methods: We used a dataset (n = 276) of right eye fundus images. The disc-foveal angle was calculated using ImageJ to generate synthetic images via image rotation. Using synthetic datasets (n = 12,740 images per model) and transfer learning (the reuse of a pretrained deep learning model on a new task), we developed a binary classifier (intorsion versus extorsion) and a multiclass classifier (physiologic versus pathologic intorsion and extorsion). Model performance was evaluated on unseen synthetic and nonsynthetic data. Results: On the synthetic dataset, the binary classifier had an accuracy and area under the receiver operating characteristic curve (AUROC) of 0.92 and 0.98, respectively, whereas the multiclass classifier had an accuracy and AUROC of 0.77 and 0.94, respectively. The binary classifier generalized well on the nonsynthetic data (accuracy = 0.94; AUROC = 1.00). Conclusions: The direction of static ocular torsion can be detected from synthetic fundus images using deep learning methods, which is key to differentiate between vestibular misalignment (skew deviation) and ocular muscle misalignment (superior oblique palsies). Translational Relevance: Given the robust performance of our models on real fundus images, similar strategies can be adopted for deep learning research in rare neuro-ophthalmologic diseases with limited datasets.


Subject(s)
Deep Learning , Fundus Oculi , ROC Curve
8.
J Neurophysiol ; 129(2): 445-454, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36651642

ABSTRACT

When the demands for visual stabilization during head rotations overwhelm the ability of the vestibuloocular reflex (VOR) to produce compensatory eye movements, the brain produces corrective saccades that bring gaze toward the fixation target, even without visual cues (covert saccades). What triggers covert saccades and what might be the role of prediction in their generation are unknown. We studied 14 subjects with acute vestibular neuritis. To minimize variability of the stimulus, head impulses were imposed with a motorized torque generator with the subject on a bite bar. Predictable and unpredictable (timing, amplitude, direction) stimuli were compared. Distributions of covert corrective saccade latencies were analyzed with a "LATER" (linear approach to threshold with ergodic rate) approach. On the affected side, VOR gain was higher (0.47 ± 0.28 vs. 0.39 ± 0.22, P ≪ 0.001) with predictable than unpredictable head impulses, and gaze error at the end of the head movement was less (5.4 ± 3.3° vs. 6.9 ± 3.3°, P ≪ 0.001). Analyzing trials with covert saccades, gaze error at saccade end was significantly less with predictable than unpredictable head impulses (4.2 ± 2.8° vs. 5.5 ± 3.2°, P ≪ 0.001). Furthermore, covert corrective saccades occurred earlier with predictable than unpredictable head impulses (140 ± 37 vs. 153 ± 37 ms, P ≪ 0.001). Using a LATER analysis with reciprobit plots, we were able to divide covert corrective saccades into two classes, early and late, with a break point in the range of 88-98 ms. We hypothesized two rise-to-threshold decision mechanisms for triggering early and late covert corrective saccades, with the first being most engaged when stimuli are predictable.NEW & NOTEWORTHY We successfully used a LATER (linear approach to threshold with ergodic rate) analysis of the latencies of corrective saccades in patients with acute vestibular neuritis. We found two types of covert saccades: early (<90 ms) and late (>90 ms) covert saccades. Predictability led to an increase in VOR gain and a decrease in saccade latency.


Subject(s)
Saccades , Vestibular Neuronitis , Humans , Eye Movements , Reflex, Vestibulo-Ocular , Head Movements
9.
Cerebellum ; 22(1): 148-154, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35133635

ABSTRACT

We report a patient with spontaneous upbeat nystagmus (UBN) due to an ischemic lesion involving the paramedian tract (PMT) in the medulla. Eye movement recordings, using an infrared video-oculography (VOG) system, showed that the slow phase of the nystagmus was initially velocity-decreasing but gradually became velocity-increasing. Simulation of the nystagmus with a mathematical model supports a role for the PMT in relaying premotor signals for vertical gaze holding to the cerebellum. Our model shows that the disruption in cerebellar input from PMT can lead to the velocity-increasing waveform of the nystagmus, whereas the velocity-decreasing waveform could be related to a mismatch between the innervational commands to the ocular muscles (the pulse and step) needed to hold gaze steady.


Subject(s)
Nystagmus, Pathologic , Humans , Nystagmus, Pathologic/diagnosis , Nystagmus, Pathologic/etiology , Eye Movements , Cerebellum/pathology
10.
Neurol Clin Pract ; 12(5): e129-e132, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36380886

ABSTRACT

Background and Objectives: Lesions of the cerebellar flocculus cause enduring downbeat nystagmus (DBN) with unrelenting oscillopsia. Unlike most patients with DBN, the flocculus is structurally spared in nonalcoholic Wernicke encephalopathy (nWE) with chronic DBN. The objective was to study the effects of alcohol in nWE. Methods: We recorded eye movements of a unique patient with nWE under controlled alcohol consumption who said his oscillopsia disappeared with a few drinks of alcohol. Results: His DBN was markedly diminished by alcohol (by 77.4%), although he remained alert with normal saccades. Discussion: This striking observation may be caused by the differential effect of alcohol on the perihypoglossal complex and the paramedian tract neurons, which control the level of activity in the flocculus, with opposite (inhibition and excitation, respectively) effects. The finding suggests new ideas about the treatment and pathophysiology of DBN with a structurally intact cerebellum.

11.
J Neurol Sci ; 442: 120407, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36115220

ABSTRACT

Periodic alternating nystagmus (PAN) is a rare oscillatory ocular motor disorder. The effects of gravity on the dynamic behavior of PAN can be studied by monitoring the nystagmus while changing head orientation. Previous studies of patients with PAN reached different conclusions about the effect of changing the orientation of the head relative to gravity on the ongoing PAN, either no effect or a damping of the nystagmus within several minutes. What neuronal circuits could account for the difference in the effects of gravity among PAN patients? We modeled how the brain resolves the tilt-translation ambiguity in normal individuals and added an unstable, oscillatory vestibular system generating PAN. PAN was suppressed in our patient in ear-down positions, in a similar pattern to that of a previously reported patient. This effect was simulated by reducing the gain of the projection of the "rotation feedback" loop to the velocity-storage integrator to approximately 5% of its normal value. With normal "rotation feedback" PAN is expected to dissipate quickly as soon as the head is rotated away from upright position. Moreover, by disconnecting the rotation feedback completely (gain = zero) the model simulated PAN that was reported to be unaffected by gravity. Thus, understanding the effect of this single parameter, the gain of the rotation feedback, can explain the observed variability among our own and previous studies.


Subject(s)
Nystagmus, Pathologic , Nystagmus, Physiologic , Humans , Nystagmus, Pathologic/etiology , Gravitation , Rotation , Head , Reflex, Vestibulo-Ocular/physiology
12.
Front Neurol ; 13: 963968, 2022.
Article in English | MEDLINE | ID: mdl-36034311

ABSTRACT

Background: Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods: We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos (n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as "nystagmus" or "no nystagmus" by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results: An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion: Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.

13.
Inorg Chem ; 61(35): 13657-13661, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35994515

ABSTRACT

While 199Hg NMR is a well-established tool for elucidating details of coordination chemistry in biochemical and inorganic complexes, historically the technique has been associated with the use of an extremely toxic chemical, dimethylmercury [Me2Hg or (CH3)2Hg], as a reference standard. In the 25 years since an accidental exposure to Me2Hg led to the tragic death of Dr. Karen Wetterhahn, the community has learned a great deal about the insidious neurotoxicity of this compound as well as more appropriate ways to avoid exposure. Here, we track the general shift toward the use of alternative mercury reference standards and away from Me2Hg.


Subject(s)
Mercury , Magnetic Resonance Spectroscopy , Mercury/chemistry
14.
Am J Case Rep ; 23: e935148, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35780294

ABSTRACT

BACKGROUND Acquired pendular nystagmus (APN) is a back and forth, oscillatory eye movement in which the 2 oppositely directed slow phases have similar waveforms. APN occurs commonly in multiple sclerosis and causes a disabling oscillopsia that impairs vision. Previous studies have proven that symptomatic therapy with gabapentin or memantine can reduce the nystagmus amplitude or frequency. However, the effect of these medications on visual acuity (VA) is less known and to our knowledge the impact of non-pharmacological strategies such as blinking on VA has not been reported. This is a single observational study without controls (Class IV) and is meant to suggest a future strategy for study of vision in patients with disabling nystagmus and impaired vision. CASE REPORT A 49-year-old woman with primary progressive multiple sclerosis with spastic paraparesis and a history of optic atrophy presented with asymmetrical binocular APN and bothersome oscillopsia. We found that in the eye with greater APN her visual acuity improved by 1 line (from 0.063 to 0.08 decimals) immediately after blinking. During treatment with memantine, her VA without blinking increased by 2 lines, from 0.063 to 0.12, but improved even more (from 0.12 to 0.16) after blinking. In the contralateral eye with a barely visible nystagmus, VA was reduced by 1 line briefly (~500 ms) after blinking. CONCLUSIONS In a patient with APN, blinking transiently improved vision. The combination of pharmacological treatment with memantine and the blinking strategy may induce better VA and less oscillopsia than either alone.


Subject(s)
Memantine , Nystagmus, Pathologic , Eye Movements , Female , Gabapentin/therapeutic use , Humans , Memantine/therapeutic use , Middle Aged , Nystagmus, Pathologic/drug therapy , Nystagmus, Pathologic/etiology , Vision Disorders , Visual Acuity
15.
J Neurol ; 269(12): 6642-6647, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35904591

ABSTRACT

Vertical pendular nystagmus (PN) rarely occurs with acute pontine lesions. To hypothesize a pathophysiology for acute vertical PN, we analyzed the clinical characteristics and quantitative eye-movement recordings of one new case with acute vertical PN and an additional 11 patients from the literature. Most patients had extensive pontine lesions causing either the locked-in syndrome or unresponsiveness, but two conscious patients had focal lesions restricted to the paramedian caudal pontine tegmentum. All patients presented a complete or partial horizontal gaze palsy, and about half showed ocular bobbing before or during the appearance of vertical PN. The vertical oscillations were conjugate at a frequency of 1-5 Hz, and the amplitudes were variable, ranging from 0.2° to 40°. The peak velocities were asymmetric in some patients, faster with downward movements. About half of the patients developed palatal tremor several weeks or months after presenting with acute vertical PN. Based on the location of the lesions and results of eye-movement recordings, we suggest two possible mechanisms for acute vertical PN; oscillations originating in the inferior olives due to disruption of the central tegmental tract or low-velocity saccadic oscillations caused by omnipause neuron damage.


Subject(s)
Nystagmus, Pathologic , Ocular Motility Disorders , Humans , Eye Movements , Pons/diagnostic imaging , Pons/pathology , Ocular Motility Disorders/complications , Movement
16.
Parkinsonism Relat Disord ; 98: 99-102, 2022 05.
Article in English | MEDLINE | ID: mdl-35635856

ABSTRACT

BACKGROUND: The number of trinucleotide CAG repeats is inversely correlated with the age at onset (AAO) of motor symptoms in individuals with Spinocerebellar Ataxia type 3 (SCA 3) and may be responsible for 50%-60% of the variability in AAO. Drawing from a social determinants of health model, we sought to determine if educational attainment further contributes to the AAO and motor symptom progression of SCA 3. METHODS: We performed a retrospective chart review in which twenty individuals met criteria for inclusion and had been seen by an ataxia specialist at our hospital between January 2005 and July 2019. AAO of motor symptoms and Scale for Assessment and Rating of Ataxia (SARA) scores were used as primary outcome measures. RESULTS: Using a linear regression, we found that having greater CAG repeat length and greater than 16 years of education results in an earlier AAO. The importance of the CAG repeat length on AAO, however, is greater amongst individuals with lower education. Using a linear mixed model evaluating SARA score over time with AAO, we found that less than 16 years of education is associated with faster progression of the disease. CONCLUSION: In our group of SCA 3 patients, level of education correlated with both the AAO and SARA scores. Though our findings need to be confirmed with a larger cohort, our study suggests that level of education can have a strong influence on health outcomes in SCA 3 and possibly other groups of patients with ataxia.


Subject(s)
Machado-Joseph Disease , Spinocerebellar Ataxias , Age of Onset , Educational Status , Humans , Machado-Joseph Disease/complications , Machado-Joseph Disease/genetics , Retrospective Studies , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/epidemiology , Spinocerebellar Ataxias/genetics
17.
Curr Opin Chem Biol ; 69: 102152, 2022 08.
Article in English | MEDLINE | ID: mdl-35561425

ABSTRACT

Faster, more sensitive, and higher resolution quantitative instrumentation are aiding a deeper understanding of how inorganic chemistry regulates key biological processes. Researchers can now image and quantify metals with subcellular resolution, leading to a vast array of new discoveries in organismal development, pathology, and disease. Metals have recently been implicated in several diseases such as Parkinson's, Alzheimers, ischemic stroke, and colorectal cancer that would not be possible without these advancements. In this review, instead of focusing on instrumentation we focus on recent applications of label-free elemental imaging and quantification and how these tools can lead to a broader understanding of metals role in systems biology and human pathology.


Subject(s)
Diagnostic Imaging , Metals , Diagnostic Imaging/methods , Humans , Ions , Mass Spectrometry/methods
19.
J Neurol ; 269(7): 3879-3890, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35396603

ABSTRACT

Fixation nystagmus refers to the nystagmus that appears or markedly increases with fixation. While relatively common in infantile (congenital) nystagmus, acquired fixation nystagmus is unusual and has been ascribed to lesions involving the cerebellar nuclei or the fibers projecting from the cerebellum to the brainstem. We aimed to report the clinical features of patients with acquired fixation nystagmus and discuss possible mechanisms using a model simulation and diagnostic significance. We describe four patients with acquired fixation nystagmus that appears or markedly increases with visual fixation. All patients had lesions involving the cerebellum or dorsal medulla. All patients showed direction-changing gaze-evoked nystagmus, impaired smooth pursuit, and decreased vestibular responses on head-impulse tests. The clinical implication of fixation nystagmus is that it may occur in central lesions that impair both smooth pursuit and the vestibulo-ocular reflex (VOR) but without creating a spontaneous nystagmus in the dark. We develop a mathematical model that hypothesizes that fixation nystagmus reflects a central tone imbalance due to abnormal function in cerebellar circuits that normally optimize the interaction between visual following (pursuit) and VOR during attempted fixation. Patients with fixation nystagmus have central lesions involving the cerebellar circuits that are involved in visual-vestibular interactions and normally eliminate biases that cause a spontaneous nystagmus.


Subject(s)
Cerebellar Diseases , Nystagmus, Pathologic , Cerebellar Diseases/complications , Cerebellar Diseases/diagnostic imaging , Fixation, Ocular , Humans , Nystagmus, Pathologic/etiology , Pursuit, Smooth , Reflex, Vestibulo-Ocular/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...