Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Undergrad Neurosci Educ ; 14(2): e9-e12, 2016.
Article in English | MEDLINE | ID: mdl-27385933

ABSTRACT

Nu Rho Psi, the National Honor Society in Neuroscience, celebrates its 10th anniversary by reflecting back upon a decade's worth of growth, successes, and accomplishments of its membership. Fundamentally, Nu Rho Psi seeks to engage the nation's best and brightest science students early in their educational pursuits and steer them towards future careers in neuroscience, thereby driving higher quality neuroscience education and research at all levels. This article details the history of Nu Rho Psi since its founding by the Faculty for Undergraduate Neuroscience (FUN) and reviews the current programs, benefits, and future initiatives of the Society. We make the case that Nu Rho Psi has enhanced the opportunities for undergraduate students of neuroscience and created a new culture among this vital cohort of budding scientists, reminiscent of the substantial network of faculty educators and departments of neuroscience established by FUN.

2.
J Neurophysiol ; 107(12): 3528-42, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22423004

ABSTRACT

Rapid temporal modulation of acoustic signals among several vertebrate lineages has recently been shown to depend on the actions of superfast muscles. We hypothesized that such fast events, known to require synchronous activation of muscle fibers, would rely on motoneuronal properties adapted to generating a highly synchronous output to sonic muscles. Using intracellular in vivo recordings, we identified a suite of premotor network inputs and intrinsic motoneuronal properties synchronizing the oscillatory-like, simultaneous activation of superfast muscles at high gamma frequencies in fish. Motoneurons lacked spontaneous activity, firing synchronously only at the frequency of premotor excitatory input. Population-level motoneuronal output generated a spike-like, vocal nerve volley that directly determines muscle contraction rate and, in turn, natural call frequency. In the absence of vocal output, motoneurons showed low excitability and a weak afterhyperpolarization, leading to rapid accommodation in firing rate. By contrast, vocal activity was accompanied by a prominent afterhyperpolarization, indicating a dependency on network activity. Local injection of a GABA(A) receptor antagonist demonstrated the necessity of electrophysiologically and immunohistochemically confirmed inhibitory GABAergic input for motoneuronal synchrony and vocalization. Numerous transneuronally labeled motoneurons following single-cell neurobiotin injection together with electrophysiological collision experiments confirmed gap junctional coupling, known to contribute to synchronous activity in other neural networks. Motoneuronal synchrony at the premotor input frequency was maintained during differential recruitment of variably sized motoneurons. Differential motoneuron recruitment led, however, to amplitude modulation (AM) of vocal output and, hence, natural call AM. In summary, motoneuronal intrinsic properties, in particular low excitability, predisposed vocal motoneurons to the synchronizing influences of premotor inputs to translate a temporal input code into a coincident and extremely synchronous, but variable-amplitude, output code. We propose an analogous suite of neuronal properties as a key innovation underlying similarly rapid acoustic events observed among amphibians, reptiles, birds, and mammals.


Subject(s)
Motor Neurons/physiology , Vocalization, Animal/physiology , Animals , Batrachoidiformes , Biotin/analogs & derivatives , Biotin/pharmacology , Excitatory Postsynaptic Potentials/physiology , GABA-A Receptor Antagonists/pharmacology , Gap Junctions/drug effects , Gap Junctions/physiology , Male , Motor Neurons/drug effects , Recruitment, Neurophysiological , Vocalization, Animal/drug effects
3.
J Comp Neurol ; 457(4): 384-403, 2003 Mar 17.
Article in English | MEDLINE | ID: mdl-12561078

ABSTRACT

Neuronal death occurs during normal development and disease and can be regulated by steroid hormones. In the hawkmoth, Manduca sexta, individual accessory planta retractor (APR) motoneurons undergo a segment-specific pattern of programmed cell death (PCD) at pupation that is triggered directly and cell autonomously by the steroid hormone 20-hydroxyecdysone (20E). APRs from abdominal segment six [APR(6)s] die by 48 hours after pupal ecdysis (PE; entry into the pupal stage), whereas APR(4)s survive until adulthood. Cell culture experiments showed previously that 20E acts directly on APRs to trigger PCD, with intrinsic segmental identity determining which APRs die. The APR(6) death pathway includes caspase activation and loss of mitochondrial function. We used transmission electron microscopy to investigate the ultrastructure of APR somata before and during PCD. APR(4)s showed normal ultrastructure at all stages examined, as did APR(6)s until approximately stage PE. During APR(6) death, there was massive accumulation of autophagic bodies and vacuoles, mitochondria became ultracondensed and aggregated into compact clusters, and ribosomes aggregated in large blocks. Nuclear ultrastructure remained normal, without chromatin condensation, until the nuclear envelope fragmented late in the death process. Light microscopic immunocytochemistry showed that dying APR(6)s were TUNEL-positive, which is diagnostic of fragmented DNA. These observations indicate that the steroid-induced, caspase-dependent, cell-autonomous PCD of APR(6)s is autophagic, not apoptotic, and support an early role for mitochondrial alterations during PCD. This system permits the study of neuronal death in response to its bona fide developmental signal, the rise in a steroid hormone.


Subject(s)
Apoptosis , Autophagy , Ecdysterone/physiology , Manduca/growth & development , Metamorphosis, Biological , Motor Neurons/ultrastructure , Animals , Immunohistochemistry , In Situ Nick-End Labeling , Microscopy, Electron , Mitochondria/ultrastructure , Motor Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...