Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(2-1): 023304, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736076

ABSTRACT

A statistical learning approach is presented to predict the dependency of steady hydrodynamic interactions of thin oblate spheroidal particles on particle orientation and Reynolds number. The conventional empirical correlations that approximate such dependencies are replaced by a neural-network-based correlation which can provide accurate predictions for high-dimensional input spaces occurring in flows with nonspherical particles. By performing resolved simulations of steady uniform flow at 1≤Re≤120 around a 1:10 spheroidal body, a database consisting of Reynolds number- and orientation-dependent drag, lift, and pitching torque acting on the particle is collected. A multilayer perceptron is trained and validated with the generated database. The performance of the neural network is tested in a point-particle simulation of the buoyancy-driven motion of a 1:10 disk. Our statistical approach outperforms existing empirical correlations in terms of accuracy. The agreement between the numerical results and the experimental observations prove the potential of the method.

2.
Phys Rev Lett ; 109(5): 054503, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-23006179

ABSTRACT

A theory was developed that explains energy separation in a vortex tube, known as one of the Maxwellian demons. It appears that there is a unique relation between the pressures in the exits of the vortex tube and its temperatures. Experimental results show that the computed and measured temperatures are in very good agreement.

3.
J Acoust Soc Am ; 118(1): 83-91, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16119332

ABSTRACT

Strong self-sustained acoustic oscillations may occur in a gas pipe network under certain gas flow velocities within the network. The pipe network under consideration consists of a main pipe, with a variable mean airflow, with two closed coaxial side branches of variable but equal length joined to the main pipe. Coupling between resonant acoustic standing waves and instabilities of the shear layers separating the flow in the main pipe from the stagnant gas in the closed side branches leads to strong acoustic oscillations at a frequency corresponding to the half-wavelength acoustic mode defined by the total side-branch length. An acoustic damper consisting of a variable acoustic resistance and compliance is used to dissipate power from the resonating mode. The response of the aeroacoustically driven resonator to variable damping will be examined for different fluid flow regimes as well as side-branch geometries.

4.
J Acoust Soc Am ; 117(6): 3628-35, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16018466

ABSTRACT

The mean flow of gas in a pipe past a cavity can excite the resonant acoustic modes of the cavity--much like blowing across the top of a bottle. The periodic shedding of vortices from the leading edge of the mouth of the cavity feeds energy into the acoustic modes which, in turn, affect the shedding of the next vortex. This so-called aeroacoustic whistle can excite very high amplitude acoustic standing waves within a cavity defined by coaxial side branches closed at their ends. The amplitude of these standing waves can easily be 20% of the ambient pressure at optimal gas flow rates and ambient pressures within the main pipe. A standing wave thermoacoustic heat pump is a device which utilizes the in-phase pressure and displacement oscillations to pump heat across a porous medium thereby establishing, or maintaining, a temperature gradient. Experimental results of a combined system of aeroacoustic sound source and a simple thermoacoustic stack will be presented.

5.
J Acoust Soc Am ; 112(1): 128-33, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12141337

ABSTRACT

The characteristic pore dimension in the stack is an important parameter in the design of thermoacoustic refrigerators. A quantitative experimental investigation into the effect of the pore dimensions on the performance of thermoacoustic devices is reported. Parallel-plate stacks with a plate spacing varying between 0.15 and 0.7 mm are manufactured and measured. The performance measurements show that a plate spacing in the stack of 0.25 mm (2.5 deltak) is optimum for the cooling power. A spacing of 0.4 mm (4 deltak) leads to the lowest temperature. The optimum spacing for the performance is about 0.3 mm (3 deltak). It is concluded that a plate spacing in the stack of about three times the penetration depth should be optimal (3 deltak) for thermoacoustic refrigeration.

6.
J Acoust Soc Am ; 112(1): 134-43, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12141338

ABSTRACT

From kinetic gas theory, it is known that the Prandtl number for hard-sphere monatomic gases is 2/3. Lower values can be realized using gas mixtures of heavy and light monatomic gases. Prandtl numbers varying between 0.2 and 0.67 are obtained by using gas mixtures of helium-argon, helium-krypton, and helium-xenon. This paper presents the results of an experimental investigation into the effect of Prandtl number on the performance of a thermoacoustic refrigerator using gas mixtures. The measurements show that the performance of the refrigerator improves as the Prandtl number decreases. The lowest Prandtl number of 0.2, obtained with a mixture containing 30% xenon, leads to a coefficient of performance relative to Carnot which is 70% higher than with pure helium.

SELECTION OF CITATIONS
SEARCH DETAIL
...