Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003628

ABSTRACT

Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.


Subject(s)
Alzheimer Disease , Insulin-Like Growth Factor I , Humans , Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Brain/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin-Like Growth Factor I/metabolism , Animals
2.
Geroscience ; 44(4): 2243-2257, 2022 08.
Article in English | MEDLINE | ID: mdl-35604612

ABSTRACT

Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.


Subject(s)
Hypothalamic Area, Lateral , Insulin-Like Growth Factor I , Animals , Mice , Orexins/metabolism , Insulin-Like Growth Factor I/metabolism , Hypothalamic Area, Lateral/metabolism , Sleep/physiology , Neurons/metabolism
3.
Cells ; 11(4)2022 02 17.
Article in English | MEDLINE | ID: mdl-35203366

ABSTRACT

Aging is accompanied by a decline in cognition that can be due to a lower IGF-I level. We studied response facilitation induced in primary somatosensory (S1) cortical neurons by repetitive stimulation of whiskers in young and old mice. Layer 2/3 and 5/6 neurons were extracellularly recorded in young (≤ 6 months of age) and old (≥ 20 month of age) anesthetized mice. IGF-I injection in S1 cortex (10 nM; 0.2 µL) increased whisker responses in young and old animals. A stimulation train at 8 Hz induced a long-lasting response facilitation in only layer 2/3 neurons of young animals. However, all cortical neurons from young and old animals showed long-lasting response facilitation when IGF-I was applied in the S1 cortex. The reduction in response facilitation in old animals can be due to a reduction in the IGF-I receptors as was indicated by the immunohistochemistry study. Furthermore, a reduction in the performance of a whisker discrimination task was observed in old animals. In conclusion, our findings indicate that there is a reduction in the synaptic plasticity of S1 neurons during aging that can be recovered by IGF-I. Therefore, it opens the possibility of use IGF-I as a therapeutic tool to ameliorate the effects of heathy aging.


Subject(s)
Insulin-Like Growth Factor I , Somatosensory Cortex , Aging , Animals , Insulin-Like Growth Factor I/pharmacology , Mice , Neuronal Plasticity/physiology , Vibrissae
4.
Mol Psychiatry ; 27(4): 2182-2196, 2022 04.
Article in English | MEDLINE | ID: mdl-35115701

ABSTRACT

Maladaptive coping behaviors are probably involved in post-traumatic stress disorders (PTSD), but underlying mechanisms are incompletely understood. We now report that mice lacking functional insulin-like growth factor I (IGF-I) receptors in orexin neurons of the lateral hypothalamus (Firoc mice) are unresponsive to the anxiolytic actions of IGF-I and develop PTSD-like behavior that is ameliorated by inhibition of orexin neurons. Conversely, systemic IGF-I treatment ameliorated PTSD-like behavior in a wild-type mouse model of PTSD (PTSD mice). Further, systemic IGF-I modified the GABA/Glutamate synaptic structure in orexin neurons of naïve wild-type mice by increasing the dephosphorylation of GABA(B) receptor subunit through inhibition of AMP-kinase (AMPK). Significantly, pharmacological inhibition of AMPK mimicked IGF-I, normalizing fear behavior in PTSD mice. Thus, we suggest that IGF-I enables coping behaviors by balancing E/I input onto orexin neurons in a context-dependent manner. These observations provide a novel therapeutic approach to PTSD through modulation of AMPK.


Subject(s)
Insulin-Like Growth Factor I , Stress Disorders, Post-Traumatic , AMP-Activated Protein Kinases , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Adenylate Kinase/metabolism , Animals , Insulin-Like Growth Factor I/metabolism , Mice , Neurons/metabolism , Orexins/metabolism , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Front Aging Neurosci ; 13: 682388, 2021.
Article in English | MEDLINE | ID: mdl-34539376

ABSTRACT

It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.

6.
J Neurosci ; 41(22): 4768-4781, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33911021

ABSTRACT

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.


Subject(s)
Adenosine/metabolism , Astrocytes/metabolism , Neuronal Plasticity/physiology , Receptor, IGF Type 1/metabolism , Somatosensory Cortex/physiology , Animals , Behavior, Animal/physiology , Down-Regulation , Learning/physiology , Long-Term Synaptic Depression/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Pyramidal Cells/physiology
7.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352990

ABSTRACT

Obesity is a risk factor for Alzheimer's disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid ß (Aß) in overweight mice because its systemic elimination may impact brain Aß load, a major landmark of AD pathology. We also analyzed whether circulating insulin-like growth factor I (IGF-I) intervenes in the effects of overweight as this growth factor modulates brain Aß clearance and is increased in the serum of overweight mice. Overweight mice showed increased Aß accumulation by the liver, the major site of elimination of systemic Aß, but unaltered brain Aß levels. We also found that Aß accumulation by hepatocytes is stimulated by IGF-I, and that mice with low serum IGF-I levels show reduced liver Aß accumulation-ameliorated by IGF-I administration, and unchanged brain Aß levels. In the brain, IGF-I favored the association of its receptor (IGF-IR) with the Aß precursor protein (APP), and at the same time, stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPß ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly reduced brain IGF-IR phosphorylation and APP/IGF-IR association were found in overweight mice as compared to lean controls. Collectively, these results indicate that a high-fat diet influences peripheral clearance of Aß without affecting brain Aß load. Increased serum IGF-I likely contributes to enhanced peripheral Aß clearance in overweight mice, without affecting brain Aß load probably because its brain entrance is reduced.


Subject(s)
Amyloid beta-Peptides/metabolism , Diet, High-Fat , Insulin-Like Growth Factor I/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers , Brain/metabolism , Brain/pathology , Disease Models, Animal , Hepatocytes/metabolism , Mice , Mice, Transgenic , Overweight
8.
FASEB J ; 34(12): 15975-15990, 2020 12.
Article in English | MEDLINE | ID: mdl-33070417

ABSTRACT

Although sleep disturbances are common co-morbidities of metabolic diseases, the underlying processes linking both are not yet fully defined. Changes in the duration of sleep are paralleled by changes in the levels of insulin-like growth factor-I (IGF-I), an anabolic hormone that shows a circadian pattern in the circulation and activity-dependent entrance in the brain. However, the specific role, if any, of IGF-I in this universal homeostatic process remains poorly understood. We now report that the activity of orexin neurons, a discrete cell population in the lateral hypothalamus that is involved in the circadian sleep/wake cycle and arousal, is modulated by IGF-I. Furthermore, mice with blunted IGF-I receptor activity in orexin neurons have lower levels of orexin in the hypothalamus, show altered electro-corticographic patterns with predominant slow wave activity, and reduced onset-sleep latency. Collectively, these results extend the role in the brain of this pleiotropic growth factor to shaping sleep architecture through the regulation of orexin neurons. We speculate that poor sleep quality associated to diverse conditions may be related to disturbed brain IGF-I input to orexin neurons.


Subject(s)
Hypothalamus/metabolism , Insulin-Like Growth Factor I/metabolism , Neurons/metabolism , Orexins/metabolism , Sleep/physiology , Animals , Circadian Rhythm/physiology , Female , Hypothalamus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology
9.
J Alzheimers Dis ; 69(4): 979-987, 2019.
Article in English | MEDLINE | ID: mdl-31156175

ABSTRACT

Increasing evidence supports the notion that Alzheimer's disease (AD), a condition that presents heterogeneous pathological disturbances, is also associated to perturbed metabolic function affecting insulin and insulin-like growth factor I (IGF-I). While impaired insulin activity leading to insulin resistance has been associated to AD, whether altered IGF-I function affects the disease is not entirely clear. Despite the limitations of mouse models to mimic AD pathology, we took advantage that serum IGF-I deficient mice (LID mice) present many functional perturbations present in AD, most prominently cognitive loss, which is reversed by treatment with systemic IGF-I. We analyzed whether these mice display other pathological traits that are usual co-morbidities of AD. We found that LID mice not only display cognitive disturbances, but also show altered mood and sociability, increased susceptibility to epileptiform activity, and a disturbed sleep/wake cycle. Collectively, these data suggest that reduced IGF-I activity contributes to heterogeneous deficits commonly associated to AD. We suggest that impaired IGF-I activity needs to be taken into consideration when modeling this condition.


Subject(s)
Alzheimer Disease/etiology , Insulin-Like Growth Factor I/deficiency , Alzheimer Disease/complications , Animals , Cognition Disorders/complications , Disease Models, Animal , Female , Humans , Insulin-Like Growth Factor I/analysis , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mood Disorders/complications , Social Behavior
10.
Aging (Albany NY) ; 11(1): 174-184, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30636168

ABSTRACT

We recently reported that exercise increases resilience to stress in young female mice. Underlying mechanisms include an interaction of the ovarian hormone estradiol (E2) with insulin-like growth factor I (IGF-I), and an increase in the hippocampal levels of the latter. Since changes in mood regulation during aging may contribute to increasing incidence of affective disorders at older age, we determined whether the protective actions of exercise are maintained at later ages. We found that during peri-menopause, exercise no longer improves resilience to stress and even becomes anxiogenic. Furthermore, the interaction seen in young females between the E2 α receptor (ERα) and the IGF-I receptor (IGF-IR) is lost at middle-age. In addition, E2 no longer induces IGF-I uptake by brain endothelial cells, and consequently, hippocampal IGF-I levels do not increase. Treatment of middle-aged females with an ERα agonist did not recover the positive actions of exercise. Collectively, these data indicate that the loss of action of exercise during peri-menopause may be related to a loss of the interaction of IGF-IR with ERα in brain endothelial cells that cannot be ameliorated by estrogen therapy. Changes in regulation of mood by physical activity may contribute to increased appearance of affective disorders along age.


Subject(s)
Affect/physiology , Aging/physiology , Endothelial Cells/metabolism , Estradiol/metabolism , Insulin-Like Growth Factor I/metabolism , Animals , Brain/blood supply , Corn Oil/pharmacology , Dietary Supplements , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Homeostasis , Mice , Physical Conditioning, Animal , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...