Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 15(2)2016 May 20.
Article in English | MEDLINE | ID: mdl-27323057

ABSTRACT

Citrus are one of the most cultivated crops in the world. Economically, they are very important fruit trees in Tunisia. Little is known about the genetic diversity of the Tunisian Citrus germplasm. Exploring this diversity is a prerequisite for the identification and characterization of the local germplasm to circumvent and controlling genetic erosion caused by biotic and abiotic stress to aid its conservation and use. In the present study, we explored the genetic diversity of 20 Tunisian orange cultivars [Citrus sinensis (L.) Osbeck] and established their relationships by using seven simple sequence repeat (SSR) loci. In total, 37 alleles and 44 genotypes were scored. The sizes of alleles ranged from 90 to 280 bp. The number of alleles per locus was from 4 to 7, with an average of 5.28. Polymorphic information content value changed from 0.599 to 0.769 with an average of 0.675. Analysis of the genotypes revealed a heterozygote deficiency across all the genotypes. The observed heterozygosity varied from 0 to 1 (average of 0.671). Cluster analysis showed that three groups could be distinguished and the polymorphism occurred independently of the geographical origin of the studied orange cultivars. The detected SSR genotypes allowed the establishment of an identification key with a discriminating power of 100%. Multivariate analysis and the neighbor-joining phylogenetic tree indicated a narrow genetic base for the orange cultivars. The usefulness of SSR markers for orange fingerprinting and evaluation of the genetic diversity in the Tunisian germplasm are discussed in this paper.


Subject(s)
Citrus sinensis/genetics , Genetic Variation , Microsatellite Repeats/genetics , Alleles , Genotype , Heterozygote , Phylogeography , Polymorphism, Genetic , Tunisia
2.
J Evol Biol ; 29(8): 1513-22, 2016 08.
Article in English | MEDLINE | ID: mdl-27118680

ABSTRACT

Understanding the driving forces and molecular processes underlying dioecy and sex chromosome evolution, leading from hermaphroditism to the occurrence of male and female individuals, is of considerable interest in fundamental and applied research. The genus Phoenix, belonging to the Arecaceae family, consists uniquely of dioecious species. Phylogenetic data suggest that the genus Phoenix has diverged from a hermaphroditic ancestor which is also shared with its closest relatives. We have investigated the cessation of recombination in the sex-determination region within the genus Phoenix as a whole by extending the analysis of P. dactylifera SSR sex-related loci to eight other species within the genus. Phylogenetic analysis of a date palm sex-linked PdMYB1 gene in these species has revealed that sex-linked alleles have not clustered in a species-dependent way but rather in X and Y-allele clusters. Our data show that sex chromosomes evolved from a common autosomal origin before the diversification of the extant dioecious species.


Subject(s)
Arecaceae/genetics , Chromosomes, Plant , Phylogeny , Evolution, Molecular , Sex Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...