Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 486, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495585

ABSTRACT

Brain atlases are important reference resources for accurate anatomical description of neuroscience data. Open access, three-dimensional atlases serve as spatial frameworks for integrating experimental data and defining regions-of-interest in analytic workflows. However, naming conventions, parcellation criteria, area definitions, and underlying mapping methodologies differ considerably between atlases and across atlas versions. This lack of standardized description impedes use of atlases in analytic tools and registration of data to different atlases. To establish a machine-readable standard for representing brain atlases, we identified four fundamental atlas elements, defined their relations, and created an ontology model. Here we present our Atlas Ontology Model (AtOM) and exemplify its use by applying it to mouse, rat, and human brain atlases. We discuss how AtOM can facilitate atlas interoperability and data integration, thereby increasing compliance with the FAIR guiding principles. AtOM provides a standardized framework for communication and use of brain atlases to create, use, and refer to specific atlas elements and versions. We argue that AtOM will accelerate analysis, sharing, and reuse of neuroscience data.


Subject(s)
Atlases as Topic , Brain , Animals , Humans , Mice , Rats , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Workflow
2.
Neuroimage ; 251: 118973, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35131433

ABSTRACT

The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collaboration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precondition for research on large cohort data sets, better generalizability, and clinical translation.


Subject(s)
Brain , Cloud Computing , Animals , Bayes Theorem , Brain/diagnostic imaging , Computer Simulation , Humans , Magnetic Resonance Imaging/methods , Mice , Software
3.
Front Neuroinform ; 13: 62, 2019.
Article in English | MEDLINE | ID: mdl-31611781

ABSTRACT

An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format.

5.
Sci Data ; 5: 180055, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29633986

ABSTRACT

We publish two electrophysiological datasets recorded in motor cortex of two macaque monkeys during an instructed delayed reach-to-grasp task, using chronically implanted 10-by-10 Utah electrode arrays. We provide a) raw neural signals (sampled at 30 kHz), b) time stamps and spike waveforms of offline sorted single and multi units (93/49 and 156/19 SUA/MUA for the two monkeys, respectively), c) trial events and the monkey's behavior, and d) extensive metadata hierarchically structured via the odML metadata framework (including quality assessment post-processing steps, such as trial rejections). The dataset of one monkey contains a simultaneously saved record of the local field potential (LFP) sampled at 1 kHz. To load the datasets in Python, we provide code based on the Neo data framework that produces a data structure which is annotated with relevant metadata. We complement this loading routine with an example code demonstrating how to access the data objects (e.g., raw signals) contained in such structures. For Matlab users, we provide the annotated data structures as mat files.


Subject(s)
Macaca , Motor Cortex/physiology , Movement/physiology , Animals
6.
Sci Rep ; 8(1): 5200, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581430

ABSTRACT

Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into planar waves. Here, we generalize this concept to additional classes of salient patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task we distinguish planar, synchronized, random, circular, and radial phase patterns in monkey primary motor and dorsal premotor cortices. We observe that patterns correlate with the beta amplitude (envelope): Coherent planar/radial wave propagation accelerates with growing amplitude, and synchronized patterns are observed at largest amplitudes. In contrast, incoherent random or circular patterns are observed almost exclusively when beta is strongly attenuated. The occurrence probability of a particular pattern modulates with behavioral epochs in the same way as beta amplitude: Coherent patterns are more present during movement preparation where amplitudes are large, while incoherent phase patterns are dominant during movement execution where amplitudes are small. Thus, we uncover a trigonal link between the spatial arrangement of beta phases, beta amplitude, and behavior. Together with previous findings, we discuss predictions on the spatio-temporal organization of precisely coordinated spiking on the mesoscopic scale as a function of beta power.


Subject(s)
Action Potentials/physiology , Hand Strength/physiology , Motor Cortex/physiology , Neurons/physiology , Animals , Brain Mapping , Evoked Potentials/physiology , Humans , Macaca mulatta/physiology , Male , Movement/physiology
7.
Front Neuroanat ; 10: 91, 2016.
Article in English | MEDLINE | ID: mdl-27746724

ABSTRACT

The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses.

8.
Front Neuroinform ; 10: 26, 2016.
Article in English | MEDLINE | ID: mdl-27486397

ABSTRACT

To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.

9.
J Exp Biol ; 212(Pt 2): 194-209, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19112138

ABSTRACT

In stick insects, walking is the result of the co-action of different pattern generators for the single legs and coordinating inter-leg influences. We have used a slippery surface setup to understand the role the local neuronal processing in the thoracic ganglia plays in the ability of the animal to show turning movements. To achieve this, we removed the influence of mechanical coupling through the ground by using the slippery surface and removed sensory input by the successive amputation of neighboring legs. We analyzed the walking pattern of the front, middle and hind legs of tethered animals mounted above the surface and compared the kinematics of the straight walking legs with those of the curve walking inside and outside legs. The walking pattern was monitored both electrically through tarsal contact measurement and optically by using synchronized high-speed video. The vectors of leg movement are presented for the intact and a reduced preparation. Animals showed the ability to walk in a coordinated fashion on the slippery surface. Upon change from straight to curve walking, the stride length for the inside legs shortens and the vector of movement of the inner legs changes to pull the animal into the curve, while the outer legs act to pull and push it into the turn. In the reduced two-leg and in the single-leg preparation the behavior of the legs remained largely unchanged in the behavioral contexts of straight walking or turning with only small changes in the extreme positions. This suggests that the single stepping legs perform given motor programs on the slippery surface in a fashion that is highly independent not only of mechanical coupling between but also of the presence of the other legs.


Subject(s)
Insecta/anatomy & histology , Insecta/physiology , Animals , Biomechanical Phenomena , Female , Lower Extremity/physiology , Psychomotor Performance , Surface Properties , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...