Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 91: 129352, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37270074

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.


Subject(s)
Protein-Tyrosine Kinases , Signal Transduction , Syk Kinase , Protein Kinase Inhibitors/pharmacology
2.
Angew Chem Int Ed Engl ; 61(22): e202112101, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35275430

ABSTRACT

We describe the development of an efficient method for the olefination of hydrazones and oximes. The key design approach that enables this transformation is tuning of the energy/polarity of C=N π-bonds by employing heteroatom functionalities (NR2 , OR). The resulting hydrazones or oximes facilitate olefination with ruthenium alkylidenes. Through this approach, we show that air-stable, commercially available ruthenium alkylidenes provide access to functionalized alkenes (20 examples) in ring-closing reactions with yields up to 88 %.

3.
Bioorg Med Chem Lett ; 30(19): 127433, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32717371

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition. As a result, we identified 30, which exhibited no hERG activity but unfortunately was poorly absorbed in rats and mice. We also identified a SYK chemical probe, 17, which exhibits excellent potency at SYK, and an adequate rodent PK profile to support in vivo efficacy/PD studies.


Subject(s)
Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Syk Kinase/antagonists & inhibitors , Animals , Binding Sites , Caco-2 Cells , Crystallography, X-Ray , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Indazoles/chemical synthesis , Indazoles/metabolism , Indazoles/pharmacokinetics , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Syk Kinase/chemistry , Syk Kinase/metabolism
4.
Org Lett ; 22(7): 2844-2848, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32202807

ABSTRACT

Herein we describe the application of Lewis-acid-catalyzed carbonyl-olefin metathesis toward the synthesis of substituted tetrahydropyridines from commercially available amino acids as chiral pool reagents. This strategy relies on FeCl3 as an inexpensive and environmentally benign catalyst and enables access to a variety of substituted tetrahydropyridines under mild reaction conditions. The reaction proceeds with complete stereoretention and is viable for a variety of natural and unnatural amino acids to provide the corresponding tetrahydropyridines in up to 99% yield.


Subject(s)
Alkenes/chemistry , Chlorides/chemistry , Ferric Compounds/chemistry , Pyrrolidines/chemical synthesis , Catalysis , Molecular Structure , Pyrrolidines/chemistry
5.
Angew Chem Int Ed Engl ; 57(28): 8682-8686, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29845720

ABSTRACT

Natural products have historically been a major source of antibiotics and therefore novel scaffolds are constantly of interest. The lipoxazolidinone family of marine natural products, with an unusual 4-oxazolidinone heterocycle at their core, represents a new scaffold for antimicrobial discovery; however, questions regarding their mechanism of action and high lipophilicity have likely slowed follow-up studies. Herein, we report the first synthesis of lipoxazolidinone A, 15 structural analogues to explore its active pharmacophore, and initial resistance and mechanism of action studies. These results suggest that 4-oxazolidinones are valuable scaffolds for antimicrobial development and reveal simplified lead compounds for further optimization.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxazolidinones/chemical synthesis , Oxazolidinones/pharmacology , Anti-Bacterial Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...