Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37967532

ABSTRACT

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Subject(s)
Cytomegalovirus , Viral Envelope Proteins , Infant, Newborn , Humans , Membrane Glycoproteins , Antibodies, Neutralizing , Memory B Cells , Antibodies, Viral , Single-Cell Analysis
2.
Immunity ; 56(12): 2803-2815.e6, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38035879

ABSTRACT

Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Antibodies, Viral , Mutation/genetics , Antibodies, Neutralizing
3.
Cell Host Microbe ; 30(9): 1231-1241.e6, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35921836

ABSTRACT

SARS-CoV-2 neutralizing antibodies play a critical role in COVID-19 prevention and treatment but are challenged by viral evolution and the emergence of novel escape variants. Importantly, the recently identified Omicron sublineages BA.2.12.1 and BA.4/5 are rapidly becoming predominant in various countries. By determining polyclonal serum activity of 50 convalescent or vaccinated individuals against BA.1, BA.1.1, BA.2, BA.2.12.1, and BA.4/5, we reveal a further reduction in BA.4/5 susceptibility to vaccinee sera. Most notably, delineation of sensitivity to an extended 163-antibody panel demonstrates pronounced antigenic differences with distinct escape patterns among Omicron sublineages. Antigenic distance and/or higher resistance may therefore favor immune-escape-mediated BA.4/5 expansion after the first Omicron wave. Finally, while most clinical-stage monoclonal antibodies are inactive against Omicron sublineages, we identify promising antibodies with high pan-SARS-CoV-2 neutralizing potency. Our study provides a detailed understanding of Omicron-sublineage antibody escape that can inform on effective strategies against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics
4.
iScience ; 25(3): 103951, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224466

ABSTRACT

Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults.

5.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34452363

ABSTRACT

Despite the recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of the SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2, retains full activity against the variant of concern (VOC) B.1.1.7 and still neutralizes the VOC B.1.351, although with reduced potency. Importantly, not only systemic but also intranasal application of DZIF-10c abolished the presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology when administered prophylactically. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , Animals , COVID-19/virology , Female , Humans , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34133077

ABSTRACT

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2
7.
Nat Protoc ; 16(7): 3639-3671, 2021 07.
Article in English | MEDLINE | ID: mdl-34035500

ABSTRACT

As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12-14 d.


Subject(s)
Antibodies, Neutralizing/isolation & purification , COVID-19/immunology , High-Throughput Screening Assays/methods , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Communicable Diseases , Humans , Immunoglobulin G/immunology , Pandemics , SARS-CoV-2/immunology
8.
Cell Host Microbe ; 29(6): 917-929.e4, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33984285

ABSTRACT

Understanding antibody-based SARS-CoV-2 immunity is critical for overcoming the COVID-19 pandemic and informing vaccination strategies. We evaluated SARS-CoV-2 antibody dynamics over 10 months in 963 individuals who predominantly experienced mild COVID-19. Investigating 2,146 samples, we initially detected SARS-CoV-2 antibodies in 94.4% of individuals, with 82% and 79% exhibiting serum and IgG neutralization, respectively. Approximately 3% of individuals demonstrated exceptional SARS-CoV-2 neutralization, with these "elite neutralizers" also possessing SARS-CoV-1 cross-neutralizing IgG. Multivariate statistical modeling revealed age, symptomatic infection, disease severity, and gender as key factors predicting SARS-CoV-2-neutralizing activity. A loss of reactivity to the virus spike protein was observed in 13% of individuals 10 months after infection. Neutralizing activity had half-lives of 14.7 weeks in serum versus 31.4 weeks in purified IgG, indicating a rather long-term IgG antibody response. Our results demonstrate a broad spectrum in the initial SARS-CoV-2-neutralizing antibody response, with sustained antibodies in most individuals for 10 months after mild COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Adolescent , Adult , Aged , Cohort Studies , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2 , Time Factors , Young Adult
10.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32673567

ABSTRACT

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , COVID-19 , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunologic Memory , Longitudinal Studies , Pandemics , SARS-CoV-2 , Somatic Hypermutation, Immunoglobulin
11.
Immunity ; 52(2): 217-219, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075725

ABSTRACT

Antibodies are key components to prevent and treat Ebola virus disease (EVD). In this issue of Immunity, Gilchuk et al. decipher the underlying mechanism of two antibodies that cooperatively target Ebolaviruses. The study provides insight into an antibody combination that potentiates antiviral activity and is able to prevent EVD in nonhuman primates.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral
12.
Cell Host Microbe ; 27(3): 418-427.e4, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32059794

ABSTRACT

Ebola virus disease is a severe health problem in Africa. Vaccines that display the Zaire ebolavirus glycoprotein spike complex are a prime component for the effort to combat it. The VH3-15/Vλ1-40-based class of antibodies was recently discovered to be a common response in individuals who received the Ebola virus vaccines. These antibodies display attractive properties, and thus likely contribute to the efficacy of the vaccines. Here, we use cryo-EM to elucidate how three VH3-15/Vλ1-40 antibodies from different individuals target the virus and found a convergent mechanism against a partially conserved site on the spike complex. Our study rationalizes the selection of the VH3-15/Vλ1-40 germline genes for specifically targeting this site and highlights Ebolavirus species-specific sequence divergences that may restrict breadth of VH3-15/Vλ1-40-based humoral response. The results from this study could help develop improved immunization schemes and further enable the design of immunogens that would be efficacious against a broader set of Ebolavirus species.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibody Specificity , Cryoelectron Microscopy , Ebola Vaccines , Ebolavirus , Epitopes/immunology , HEK293 Cells , Humans , Protein Binding , Protein Structure, Tertiary
13.
Nat Med ; 25(10): 1589-1600, 2019 10.
Article in English | MEDLINE | ID: mdl-31591605

ABSTRACT

Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. EBOV-targeting antibodies cross-react with other Ebolavirus species, and detailed epitope mapping revealed overlapping target epitopes with antibodies isolated from EVD survivors. Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies.


Subject(s)
Ebola Vaccines/administration & dosage , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immunity, Humoral/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Ebola Vaccines/adverse effects , Ebola Vaccines/immunology , Ebolavirus/pathogenicity , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Male , Middle Aged , Vaccination/adverse effects , Vesiculovirus/genetics , Volunteers
14.
Int J Nanomedicine ; 14: 3503-3516, 2019.
Article in English | MEDLINE | ID: mdl-31190807

ABSTRACT

Purpose: The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses. Materials and methods: A series of structurally similar lipids, consisting of arginine (Arg) head group and varied lengths of alkyl chains or spacers in between were used to prepare cationic liposomes. Lipopolysaccharide-primed human or murine macrophages or phorbol 12-myristate 13-acetate-primed THP-1 cells were treated with these liposomes, and interleukin (IL)-1ß secretion was measured to quantify the NLRP3 inflammasome activation. Lysosome rupture was examined in THP-1 cells by the fluorescence loss of acridine orange, a lysosome dye. Further, chicken ovalbumin (OVA) was loaded on the liposome surface and applied to murine bone marrow-derived dendritic cells (BMDCs), which activate OT-I and OT-II lymphocytes upon major histocompatibility complex (MHC) class I- and class II-mediated antigen presentation, respectively. OT-I and OT-II cell division and IL-2 secretion were measured to evaluate the antigen presentation efficiency. The expressions of MHC molecules and co-stimulatory molecules ie, CD80, CD86, and CD40 on BMDCs were investigated by flow cytometry. Results: All the liposomes showed size distributions of 80-200 nm and zeta potentials of around 50 mV. A3C14 liposomes, consisting of Arg-C3-Glu2C14 lipids induced the most potent lysosome rupture and NLRP3 inflammasome activation. OVA-A3C14 also exhibited the most potent MHC class I- and class II-mediated antigen presentation in BMDCs without interfering MHC and co-stimulatory molecules. Conclusion: The hydrophobic moieties of arginine-based liposomes are crucial in stimulating innate immune cells. A3C14 liposomes were non-immunogenic but strongly activated innate immune cells and promoted antigen presentation, and therefore can be applied as immune adjuvants.


Subject(s)
Antigen Presentation/drug effects , Arginine/pharmacology , Dendritic Cells/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cations , Dendritic Cells/drug effects , Female , Histocompatibility Antigens/metabolism , Humans , Lipids/chemistry , Lipopolysaccharides/pharmacology , Liposomes , Lysosomes/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL
15.
Oncotarget ; 8(4): 6857-6872, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28036287

ABSTRACT

N-glycosylation is generally accepted to enhance the immunogenicity of antigens because of two main reasons. First, the attachment of glycans enables recognition by endocytic receptors like the mannose receptor (MR) and hence increased uptake by dendritic cells (DCs). Second, foreign glycans are postulated to be immunostimulatory and their recognition could induce DC activation. However, a direct comparison between the immunogenicity of N-glycosylated vs. de-glycosylated proteins in vivo and a direct effect of N-glycosylated antigens on the intrinsic capacity of DCs to activate T cells have not been assessed so far.To analyze whether enforced N-glycosylation is a suited strategy to enhance the immunogenicity of non-glycosylated antigens for vaccination studies, we targeted non-glycoproteins towards the MR by introduction of artificial N-glycosylation using the methylotrophic yeast Komagataella phaffii (previously termed Pichia pastoris). We could demonstrate that the introduction of a single N-X-S/T motif was sufficient for efficient MR-binding and internalization. However, addition of N-glycosylated proteins neither influenced DC maturation nor their general capacity to activate T cells, pointing out that enforced N-glycosylation does not increase the immunogenicity of the antigen per se. Additionally, increased antigen-specific cytotoxic T cell responses in vivo after injection of N-glycosylated compared to de-glycosylated proteins were observed but this effect strongly depended on the epitope tested. A beneficial effect of N-glycosylation on antibody production could not be detected, which might be due to MR-cross-linking on DCs and to concomitant differences in IL-6 production by CD4+ T cells.These observations point out that the effect of N-glycosylation on antigen immunogenicity can vary between different antigens and therefore might have important implications for the development of vaccines using K. phaffii.


Subject(s)
Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Lymphocyte Activation , Mannose-Binding Lectins/metabolism , Protein Processing, Post-Translational , Receptors, Cell Surface/metabolism , T-Lymphocytes/metabolism , beta-Galactosidase/metabolism , Animals , Cell Communication , Cell Proliferation , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Epitopes , Glycosylation , HEK293 Cells , Humans , Immunogenicity, Vaccine , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , Ligands , Mannose Receptor , Mannose-Binding Lectins/deficiency , Mannose-Binding Lectins/genetics , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Ovalbumin/metabolism , Pichia/genetics , Pichia/metabolism , Protein Interaction Domains and Motifs , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , T-Lymphocytes/immunology , Time Factors , Transfection , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/immunology
17.
Immunity ; 42(5): 850-63, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25979419

ABSTRACT

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER.


Subject(s)
Antigens/metabolism , CD8-Positive T-Lymphocytes , Cross-Priming/immunology , Cytosol/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , Models, Biological , Animals , Antigens/immunology , Cell Line , Cytosol/immunology , Membrane Proteins/chemistry , Mice , Protein Transport , SEC Translocation Channels
18.
Mol Immunol ; 55(2): 146-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23127488

ABSTRACT

The molecular mechanisms governing cross-presentation of extracellular antigens on MHC I molecules are not fully understood. It is generally assumed that, in order to be processed for cross-presentation, most antigens need to be transported from the endosomal compartment into the cytosol to be processed by the cytosolic proteasome. The mechanisms regulating such intracellular transport are largely unknown. In a recent study, we demonstrated that the ubiquitination status of the mannose receptor (MR), an endocytic receptor that targets its ligands specifically toward cross-presentation, can regulate such antigen export into the cytosol. Poly-ubiquitination of the MR recruits p97 toward the endosomal membrane, which is essential for antigen translocation out of the endosomes. Furthermore, we identified Tumor Susceptibility Gene 101 (TSG101) as an important regulator of MR poly-ubiquitination and hence of antigen translocation and cross-presentation. Additionally, we describe in this article some perspectives and open questions regarding the molecular mechanisms of cross-presentation. In particular, we highlight the search for proteins regulating antigen translocation in the cytosol, the recruitment of ER proteins and proteasomes toward antigen-containing endosomes and the importance of antigen stability for cross-presentation.


Subject(s)
Cross-Priming , Endosomes/immunology , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism , Antigen Presentation , Cytosol/immunology , Cytosol/metabolism , DNA-Binding Proteins/metabolism , Dendritic Cells/immunology , Endosomal Sorting Complexes Required for Transport/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Mannose Receptor , Nuclear Proteins/metabolism , Protein Transport , Transcription Factors/metabolism , Ubiquitination
20.
Proc Natl Acad Sci U S A ; 108(24): 9933-8, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21628571

ABSTRACT

The molecular mechanisms regulating noncanonical protein transport across cellular membranes are poorly understood. Cross-presentation of exogenous antigens on MHC I molecules by dendritic cells (DCs) generally requires antigen translocation from the endosomal compartment into the cytosol for proteasomal degradation. In this study, we demonstrate that such translocation is controlled by the endocytic receptor and regulated by ubiquitination. Antigens internalized by the mannose receptor (MR), an endocytic receptor that targets its ligands specifically toward cross-presentation, were translocated into the cytosol only after attachment of a lysin48-linked polyubiquitin chain to the cytosolic region of the MR. Furthermore, we identify TSG101 as a central regulator of MR ubiquitination and antigen translocation. Importantly, we demonstrate that MR polyubiquitination mediates the recruitment of p97, a member of the ER-associated degradation machinery that provides the driving force for antigen translocation, toward the endosomal membrane, proving the central role of the endocytic receptor and its ubiquitination in antigen translocation.


Subject(s)
Adenosine Triphosphatases/metabolism , Antigens/metabolism , Cross-Priming , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Nuclear Proteins/metabolism , Receptors, Cell Surface/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/immunology , Animals , Antigens/immunology , Blotting, Western , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cytosol/immunology , Cytosol/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endocytosis/immunology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/immunology , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/immunology , Endosomes/metabolism , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Mannose Receptor , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/immunology , Mice , Mice, Knockout , Microscopy, Fluorescence , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Ovalbumin/immunology , Ovalbumin/metabolism , Polyubiquitin/metabolism , Protein Transport/immunology , RNA Interference , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism , Ubiquitination/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...