Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 19(22): 3745-3770, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31596297

ABSTRACT

Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switching. In this work, we review and discuss the combination of centrifugal with pneumatic forces which enables transport of even complex liquids in any direction on centrifugal systems, provides actuation for valving and switching, offers alternatives for mixing and enables accurate and precise metering and aliquoting. In addition, pneumatics can be employed for timing to carry out any of the above listed unit operations in a sequential and cascaded manner. Firstly, different methods to generate pneumatic pressures are discussed. Then, unit operations and applications that employ pneumatics are reviewed. Finally, a tutorial section discusses two examples to provide insight into the design process. The first tutorial explains a comparatively simple implementation of a pneumatic siphon valve and provides a workflow to derive optimum design parameters. The second tutorial discusses cascaded pneumatic operations consisting of temperature change rate actuated valving and subsequent pneumatic pumping. In conclusion, combining pneumatic actuation with centrifugal microfluidics allows for the design of robust fluidic networks with simple fluidic structures that are implemented in a monolithic fashion. No coatings are required and the overall demands on manufacturing are comparatively low. We see the combination of centrifugal forces with pneumatic actuation as a key enabling technology to facilitate compact and robust automation of biochemical analysis.

2.
Biomicrofluidics ; 11(2): 024114, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28798850

ABSTRACT

Automated and robust separation of 14 µl of plasma from 40 µl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%-60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming.

3.
Lab Chip ; 16(10): 1873-85, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27095248

ABSTRACT

Centrifugal microfluidics shows a clear trend towards a higher degree of integration and parallelization. This trend leads to an increase in the number and density of integrated microfluidic unit operations. The fact that all unit operations are processed by the same common spin protocol turns higher integration into higher complexity. To allow for efficient development anyhow, we introduce advanced lumped models for network simulations in centrifugal microfluidics. These models consider the interplay of centrifugal and Euler pressures, viscous dissipation, capillary pressures and pneumatic pressures. The simulations are fast and simple to set up and allow for the precise prediction of flow rates as well as switching and valving events. During development, channel and chamber geometry variations due to manufacturing tolerances can be taken into account as well as pipetting errors, variations of contact angles, compliant chamber walls and temperature variations in the processing device. As an example of considering these parameters during development, we demonstrate simulation based robustness analysis for pneumatic siphon valving in centrifugal microfluidics. Subsequently, the influence of liquid properties on pumping and valving is studied for four liquids relevant for biochemical analysis, namely, water (large surface tension), blood plasma (large contact angle hysteresis), ethanol/water (highly wetting) and glycerine/water (highly viscous). In a second example, we derive a spin protocol to attain a constant flow rate under varying pressure conditions. Both examples show excellent agreement with experimental validations.


Subject(s)
Centrifugation/instrumentation , Lab-On-A-Chip Devices , Models, Theoretical , Computer Simulation
4.
Lab Chip ; 15(21): 4133-7, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26348615

ABSTRACT

Microparticles are widely used as solid phase for affinity-based separation. Here, we introduce a new method for automated handling of microparticles in centrifugal microfluidics that is not restricted by the particle size and requires neither auxiliary means such as magnets nor coating of microfluidic structures. All steps are initiated and controlled by the speed of rotation only. It is based on storage and "on demand" release of pneumatic energy within tunable time frames: a slow release of the pneumatic energy triggers a first fluidic path through which the supernatant above the sedimented particles is removed. An abrupt release triggers a second path which allows for liquid routing and transport of the re-suspended particles. Re-suspension of particles is thereby achieved by quickly changing the speed of rotation. We demonstrate the exchange of the particle carrier medium with a supernatant removal efficiency of more than 99.5% and a particle loss below 4%. Re-suspension and subsequent transport of suspended particles show a particle loss below 7%. The method targets the automation of particle-based assays e.g. DNA extractions and immunoassays. It is compatible with monolithic integration and suitable for mass production technologies e.g. thermoforming or injection moulding.


Subject(s)
Centrifugation/methods , Microfluidic Analytical Techniques/methods , Microspheres , Magnets , Particle Size , Rotation , Suspensions
5.
Chem Soc Rev ; 44(17): 6187-229, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26035697

ABSTRACT

Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.


Subject(s)
Centrifugation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Centrifugation/methods , Chemistry, Clinical/instrumentation , Chemistry, Clinical/methods , Equipment Design , Food Analysis/instrumentation , Food Analysis/methods , Humans , Nucleic Acids/analysis
6.
Lab Chip ; 15(6): 1545-53, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25648105

ABSTRACT

Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.


Subject(s)
Centrifugation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Models, Theoretical , Time Factors
7.
Lab Chip ; 15(4): 1084-91, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25524461

ABSTRACT

Microfluidic systems for polymerase chain reaction (PCR) should be fully closed to avoid vapor loss and to exclude the risk of contaminating the laboratory environment. In closed systems however, the high temperatures of up to 95 °C associated with PCR cause high overpressures up to 100 kPa, dominated by the increase of vapor partial pressure upon evaporation. Such high overpressures pose challenges to the mechanical stability of microfluidic chips as well as to the liquid handling in integrated sample-to-answer systems. In this work, we drastically reduce the pressure increase in fully closed PCR systems by integrating a microchannel that serves as a vapor-diffusion barrier (VDB), separating the liquid-filled PCR chamber from an auxiliary air chamber. In such configurations, propagation of vapor from the PCR chamber into the auxiliary air chamber and as a consequence the increase of pressure is limited by the slow diffusion process of vapor through the VDB. At temperature increase from 23 °C to 95 °C, we demonstrate the reduction of overpressure from more than 80 kPa without the VDB to only 35 kPa with the VDB. We further demonstrate proper function of VDB and its easy integration with downstream processes for PCR based nucleic acid amplification within centrifugal microfluidics. Without integration of the VDB, malfunction due to pressure-induced delamination of the microfluidic chip occurred.


Subject(s)
Diffusion , Lab-On-A-Chip Devices , Polymerase Chain Reaction/instrumentation , Pressure , Equipment Design , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...