Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Exerc Sport Sci Rev ; 52(1): 23-30, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37699015

ABSTRACT

Martial arts training focuses on whole-body movement patterning, philosophy, interpersonal interactions, and functional self-defense. Such training has positive impacts on physical, psychological, and cognitive well-being in older adults and children with and without clinical conditions. We hypothesize that martial arts training can be delivered as a form of exercise therapy for people at all ages to enhance overall health.


Subject(s)
Exercise Therapy , Martial Arts , Child , Humans , Aged , Martial Arts/psychology
2.
Eur J Appl Physiol ; 122(7): 1695-1707, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35471257

ABSTRACT

PURPOSE: In sport and exercise, warm-ups induce various physiological changes that facilitate subsequent performance. We have shown that delivering patterned stimulation to cutaneous afferents during sprint cycling mitigates fatigue-related decrements in performance, and that repeated sensory stimulation amplifies spinal reflex excitability. Therefore, the purpose of this study was to assess whether sensory enhancement of warm-up would affect subsequent high-intensity arm cycling performance. METHODS: Participants completed three experimental sessions, in which they randomly performed either a control, stim, or sleeve warm-up condition prior to maximal duration arm cycling. During the control condition, warmup consisted of low-intensity arm cycling for 15 min. The stim condition was the same, except they received alternating pulses (400 ms, 50 Hz) of stimulation just above their perceptual threshold to the wrists during warm-up. The third condition required participants to wear custom fabricated compression sleeves around the elbow during warm-up. Grip strength and spinal reflex excitability were measured before and after each warm-up and fatigue protocol, which required participants to arm cycle at 85% of peak power output until they reached volitional fatigue. Peak power output was determined during an incremental test at minimum 72 h prior to the first session. RESULTS: Both sensory enhanced warm-up conditions amplified subsequent high-intensity arm cycling performance by ~ 30%. Additionally, the stim and sleeve warm-up conditions yielded improvements in grip strength (increased by ~ 5%) immediately after the sensory enhanced warm-ups. Ergogenic benefits from the sensory enhanced warm-up conditions did not differ between one another. CONCLUSION: These findings demonstrate that enhanced sensory input during warm-up can elicit improvements in both maximal and submaximal performance measures.


Subject(s)
Warm-Up Exercise , Bicycling , Exercise/physiology , Fatigue , Hand Strength , Humans , Muscle, Skeletal/physiology , Warm-Up Exercise/physiology
3.
BMC Sports Sci Med Rehabil ; 14(1): 65, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35410626

ABSTRACT

BACKGROUND: Martial arts training has shown positive impacts on balance and physiological measurements. Further investigation of the contents and feasibility of an effective therapeutic assessment of martial arts is needed in older adults, mainly for future applications and real-world implementation. METHODS: Sixteen older adults (8 male, 8 female, age 59-90 years), with or without chronic conditions, participated in a preliminary study using 5-weeks of karate training and a triple baseline control procedure. Group and single subject data analyses were conducted for dynamic balance, Timed Up and Go (TUG), hand grip, ankle plantarflexion force, and spinal cord excitability (via the soleus H-reflex) pre- and post-training. RESULTS: On average, participants completed a total of 2437 steps, 1762 turns, 3585 stance changes, 2047 punches, 2757 blocks, and 1253 strikes. Karate training improved dynamic balance performance such that the group average time was reduced (time to target (-13.6%, p = 0.020) and time to center (-8.3%, p = 0.010)). TUG was unchanged when considering the entire group (p = 0.779), but six participants displayed significant changes. Left handgrip (7.9%, p = 0.037), and plantarflexion force in the right (28.8%, p = 0.045) and left leg (13.3%, p = 0.024) increased for the group. Spinal cord excitability remained unchanged in group data analysis but 5 individuals had modulated Hmax/Mmax ratios. CONCLUSION: 5-weeks of karate training delivered in a fashion to mimic generally accessible community-level programs improved balance and strength in older adults. Whole-body movement embodied in karate training enhanced neuromuscular function and postural control. We met the overriding goal of this preliminary study to emphasize and assess feasibility and safety for the generalizability of martial arts interventions to real-world communities to impact health outcomes. Further quantitative work should explore threshold dose and development of martial arts training interventions as potential "exercise is medicine" functional fitness for older adults.

4.
PLoS One ; 17(3): e0264686, 2022.
Article in English | MEDLINE | ID: mdl-35298508

ABSTRACT

In 1894 foundational work showed that training one limb for "muscular power" (i.e. strength) or "muscular control" (i.e. skill) improves performance in both limbs. Despite that the original data were exclusively from two female participants ("Miss Smith" and "Miss Brown"), in the decades that followed, such "cross-education" training interventions have focused predominantly on improving strength in men. Here, in a female cohort, we revisit that early research to underscore that training a task that requires precise movements in a timely fashion (i.e. "muscular control") on one side of the body is transferred to the contralateral untrained limb. With unilateral practice, women reduced time to completion and the number of errors committed during the commercially available game of Operation® Iron Man 2 with both limbs. Modest reductions in bilateral Hoffmann (H-) reflex excitability evoked in the wrist flexors suggest that alterations in the spinal cord circuitry may be related to improvements in performance of a fine motor task. These findings provide a long overdue follow-up to the efforts of Miss Theodate L. Smith from more than 125 years ago, highlight the need to focus on female participants, and advocate more study of cross-education of skilled tasks.


Subject(s)
H-Reflex , Muscle, Skeletal , Female , Humans , Male , Muscle, Skeletal/physiology , Spinal Cord , Upper Extremity , Wrist
5.
J Autism Dev Disord ; 52(5): 2180-2186, 2022 May.
Article in English | MEDLINE | ID: mdl-34085151

ABSTRACT

This quasi-experimental study investigated effects of Tai Chi Chuan training on stereotypic behavior of children with autism spectrum disorder. Twenty-three participants (mean age = 9.60 ± 1.40 years) were assigned to experimental (N = 12) and control (N = 11) groups. The experimental group received 12 weeks of Tai Chi training and all participants had pre, post, and one-month follow-up assessments. Stereotypic behavior measured using Gilliam Autism Rating Scale 2 Scores, was significantly altered by ~ 25% in the Tai Chi Chuan group. Behavioral change was maintained at follow up since there was no significant difference between that and the posttest. In conclusion, Tai Chi Chuan training is a useful and appropriate intervention to modulate behavior in individuals with autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder , Tai Ji , Autism Spectrum Disorder/therapy , Child , Humans , Stereotyped Behavior
7.
BMC Sports Sci Med Rehabil ; 13(1): 61, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078449

ABSTRACT

BACKGROUND: Compression garments are generally used for their potential benefits in exercise performance and post-exercise recovery. Previous studies show that compression sleeves worn at the elbow change neuromuscular control and improve performance during reaching movement. Cutaneous stimulation of the foot skin produces location-specific reflexes in the lower limb that guide foot placement during locomotion. However, it is not clear whether enhancement of sensory feedback with compression socks can alter the neuromuscular excitability of muscles in the leg and amplify balance performance and walking. The current project aimed to determine whether enhanced sensory input from wearing compression socks could affect: 1) spinal cord excitability (as measured by cutaneous reflexes from stimulation at the top or bottom of the foot during locomotion); 2) static balance performance; and, 3) dynamic balance performance following virtual perturbations. METHODS: Twelve participants completed walking and balance tasks wearing four types of garments: 1) non-compression (control) socks; 2) ankle compression socks; 3) calf-compression socks; and, 4) customized ankle sleeves. During walking, electrical stimulations were delivered to three discrete locations on the dorsal (ankle crease, forefoot medial) and plantar (forefoot medial) surfaces of the foot in separate trials with each garment. Electromyography of ankle dorsiflexor tibialis anterior, plantarflexor medial gastrocnemius and evertor peroneus longus were measured bilaterally along with kinematic data from knee and ankle and kinetics under the right (stimulated) foot. RESULTS: Compared to control socks, altered cutaneous reflexes and biomechanical responses were observed in all the conditions during walking. In dynamic balance tests, time and integrated EMG for recovering from virtual perturbation were significantly reduced when wearing calf compression socks and the ankle sleeve. CONCLUSIONS: Our findings suggest sensory enhancement from compression garments modifies spinal cord excitability during walking and improves performance in balance recovery after virtual perturbation.

8.
J Neurophysiol ; 125(2): 331-343, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33326346

ABSTRACT

We examined whether repetitive electrical stimulation to discrete foot sole regions that are phase-locked to the step cycle modulates activity patterns of ankle muscles and induces neuronal adaptation during human walking. Nonnoxious repetitive foot sole stimulation (STIM; 67 pulses at 333 Hz) was given to the medial forefoot (f-M) or heel (HL) regions at 1) the stance-to-swing transition, 2) swing-to-stance transition, or 3) midstance, during every step cycle for 10 min. Stance, but not swing, durations were prolonged with f-M STIM delivered at stance-to-swing transition, and these changes remained for up to 20-30 min after the intervention. Electromyographic (EMG) burst durations and amplitudes in the ankle extensors were also prolonged and persisted for 20 min after the intervention. Interestingly, STIM to HL was ineffective at inducing modulation, suggesting stimulation location-specific adaptation. In contrast, STIM to HL (but not f-M), at the swing-to-stance phase transition, shortened the step cycle by premature termination of swing. Furthermore, the onset of EMG bursts in the ankle extensors appeared earlier than in the control condition. STIM delivered during the midstance phase was ineffective at modulating the step cycle, highlighting phase-dependent adaptation. These effects were absent when STIM was applied while mimicking static postures for each walking phase during standing. Our findings suggest that the combination of walking-related neuronal activity with repetitive sensory inputs from the foot can generate short-term adaptation that is phase-dependent and localized to the site of STIM.NEW & NOTEWORTHY Repetitive (∼10 min) long (200 ms) trains of sensory stimulation to discrete areas of the foot sole produce persistent changes in muscle activity and cycle timing during walking. Interactions between the delivery phase and stimulus location determine the expression of the adaptations. These observations bear striking similarities to those in decerebrate cat experiments and may be usefully translated to improving locomotor function after neurotrauma.


Subject(s)
Foot/physiology , Muscle, Skeletal/physiology , Sensation , Walking , Adaptation, Physiological , Adult , Electric Stimulation , Female , Humans , Male
9.
Exp Brain Res ; 238(10): 2229-2243, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32710371

ABSTRACT

A common neural control mechanism coordinates various types of rhythmic locomotion performed in the sagittal plane, but it is unclear whether frontal plane movements show similar neural patterning in adult humans. The purpose of this study was to compare cutaneous reflex modulation patterns evoked during sagittal and frontal plane rhythmic movements. Eight healthy, neurologically intact adults (three males, five females) walked and sidestepped on a treadmill at approximately 1 Hz. The sural nerve of the dominant (and lead) limb was stimulated randomly every 3-7 steps at eight phases of each gait cycle. Ipsilateral electromyographic recordings from four lower leg muscles and kinematic data from the ankle were collected continuously throughout both tasks. Data from unstimulated gait cycles were used as control trials to calculate middle-latency reflex responses (80-120 ms) and kinematic changes (140-220 ms) following electrical stimulation. Results show that the cutaneous reflex modulation patterns were similar across both tasks despite significant differences in background EMG activity. However, increased reflex amplitudes were observed during the late swing and early stance phases of sidestepping, which directly altered ankle kinematics. These results suggest that the neural control mechanisms responsible for coordinating sagittal locomotion are flexibly modified to coordinate frontal plane activities even with very different foot landing mechanics.


Subject(s)
Reflex , Walking , Adult , Electric Stimulation , Electromyography , Female , Humans , Leg , Locomotion , Male , Muscle, Skeletal
10.
BMJ Open Sport Exerc Med ; 6(1): e000740, 2020.
Article in English | MEDLINE | ID: mdl-32617174

ABSTRACT

OBJECTIVES: We used objective assessment tools to detect subtle neurological deficits that accompany repetitive and mild head impacts in contact sport across a season. METHODS: Female participants (n=13, 21±1.8 years old; 167.6±6.7 cm; 72.8±6.1 kg) completed assessments pre and post the varsity rugby season. A commercial balance board was used to assess static balance and response to dynamic postural challenge. Spinal cord excitability via the soleus H-reflex was assessed in both legs. Video analysis was used to identify head impact exposures. RESULTS: A total of 172 potential concussive events were verified across 11 athletes (15.6±11; 95% CI: 6.5 to 19.8). Balance performance was worse at post-season for total centre of pressure which increased by 26% in the double stance on a stable surface (t(12)=-2.33; p=0.03; d=0.6) and by 140% in the tandem stance on a foam surface (t(12)=-3.43; p<0.01; d=0.9). Despite that, dynamic postural performance was improved after the season (p<0.01). Spinal cord excitability in rugby athletes did not change across the season but deviated from normative values at baseline. CONCLUSION: Quantitative measures revealed that exposure to impacts across a competitive rugby season impair balance in two specific stances in female rugby athletes. Tandem-leg stance on an unstable surface and double-leg stance on firm surface are useful assessment conditions when performed over a low-cost balance board, even without clinically diagnosed concussion.

11.
J Neurophysiol ; 124(2): 342-351, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32579412

ABSTRACT

Priming with patterned stimulation of antagonist muscle afferents induces modulation of spinal cord excitability as evidenced by changes in group Ia reciprocal inhibition. When assessed transiently with a condition-test pulse paradigm, stimulating cutaneous afferents innervating the foot reduces Ia presynaptic inhibition and facilitates soleus Hoffmann (H)-reflex amplitudes. Modulatory effects (i.e., priming) of longer lasting sensory stimulation of cutaneous afferents innervating the foot have yet to be examined. As a first step, we examined how priming with 20 min of patterned and alternating stimulation between the left and right foot affects spinal cord excitability. During priming, stimulus trains (550 ms; consisting of twenty-eight 1-ms pulses at 51 Hz, 1.2 times the radiating threshold) were applied simultaneously to the sural and plantar nerves of the ankle. Stimulation to the left and right ankle was out of phase by 500 ms. We evoked soleus H-reflexes and muscle compound action potentials (M waves) before and following priming stimulation to provide a proxy measure of spinal cord excitability. H-reflex and M-wave recruitment curves were recorded at rest, during brief (<2 min) arm cycling, and with sural conditioning [train of five 1-ms pulses at 2 times the radiating threshold (RT) with a condition-test interval (C-T) = 80 ms]. Data indicate an increase in H-reflex excitability following priming via patterned sensory stimulation. Transient sural conditioning was less effective following priming, indicating that the increased excitability of the H-reflex is partially attributable to reductions in group Ia presynaptic inhibition. Sensory stimulation to cutaneous afferents, which enhances spinal cord excitability, may prove useful in both rehabilitation and performance settings.NEW & NOTEWORTHY Priming via patterned stimulation of the nervous system induces neuroplasticity. Yet, accessing previously known cutaneous reflex pathways to alter muscle reflex excitability has not yet been examined. Here, we show that sensory stimulation of the cutaneous afferents that innervate the foot sole can amplify spinal cord excitability, which, in this case, is attributed to reductions in presynaptic inhibition.


Subject(s)
Action Potentials/physiology , Foot/innervation , H-Reflex/physiology , Muscle, Skeletal/physiology , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Neurons, Afferent/physiology , Spinal Nerves/physiology , Adult , Humans , Male , Physical Stimulation , Young Adult
12.
Exp Brain Res ; 238(5): 1335-1349, 2020 May.
Article in English | MEDLINE | ID: mdl-32333034

ABSTRACT

Arm swing movement is coordinated with movement of the legs during walking, where the frequency of coordination depends on walking speed. At typical speeds, arm and leg movements, respectively, are frequency locked in a 1:1 ratio but at slow speeds this changes to a 2:1 ratio. It is unknown if the changes in interlimb ratio that accompany slow walking speeds alters regulation of somatosensory feedback. To probe the neural interactions between the arms and legs, somatosensory linkages in the form of interlimb cutaneous reflexes were examined. It was hypothesized that different interlimb frequencies and walking speeds would result in changes in the modulation of cutaneous reflexes between the arms and legs. To test this hypothesis, participants walked in four combinations of walking speed (typical, slow) and interlimb coordination (1:1, and 2:1), while cutaneous reflexes and background muscle activity were evaluated with stimulation applied to the superficial peroneal nerve at the ankle and superficial radial nerve at the wrist. Results show main effects of interlimb coordination and walking speed on cutaneous reflex modulation, effects are largest in the swing phase, and a directional coupling was observed, where changes in the frequency of arm movements had a greater effect on muscle activity in the legs compared to the reverse. Task-dependent modulation was also revealed from stimulation at local and remote sources. Understanding the underlying neural mechanisms for the organization of rhythmic arm movement, and its coordination with the legs in healthy participants, can give insight into pathological walking, and will facilitate the development of effective strategies for the rehabilitation of walking.


Subject(s)
Arm/physiology , Feedback, Sensory/physiology , Leg/physiology , Psychomotor Performance/physiology , Skin Physiological Phenomena , Walking Speed/physiology , Adult , Biomechanical Phenomena , Electric Stimulation , Electromyography , Female , Humans , Male , Muscle, Skeletal/physiology , Peripheral Nerves/physiology , Reflex/physiology , Young Adult
13.
J Neurophysiol ; 123(4): 1427-1438, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32159422

ABSTRACT

Stimulating cutaneous nerves, causing tactile sensations, reduces the perceived heaviness of an object, suggesting that either descending commands are facilitated or the perception of effort is reduced when tactile sensation is enhanced. Sensory stimulation can also mitigate decrements in motor output and spinal cord excitability that occur with fatigue. The effects of sensory stimulation applied with coincident timing of voluntary force output, however, are yet to be examined. Therefore, the purpose of this study was to examine effects of sensory enhancement to nerves innervating opposed skin areas of the foot (top or bottom) on force production during voluntary plantarflexion or dorsiflexion contractions. Stimulation trains were applied for 2 s at either a uniform 150 Hz or a modulated frequency that increased linearly from 50 to 150 Hz and were delivered at the initiation of the contraction. Participants were instructed to perform a ramp contraction [~10% maximal voluntary contraction (MVC)/s] to ~20% MVC and then to hold ~20% MVC for 2 s while receiving real-time visual feedback. Cutaneous reflexes were evoked 75 ms after initiating the hold (75 ms after sensory enhancement ended). Force output was greater for all sensory-enhanced conditions compared with control during plantarflexion; however, force output was not amplified during dorsiflexion. Cutaneous reflexes evoked after sensory enhancement were unaltered. These results indicate that sensory enhancement can amplify plantarflexion but not dorsiflexion, likely as a result of differences in neuroanatomical projections to the flexor and extensor motor pools. Further work is required to elucidate the mechanisms of enhanced force during cutaneous stimulation.NEW & NOTEWORTHY The efficacy of behaviorally timed sensory stimulation to enhance sensations and amplify force output has not been examined. Here we show cutaneous nerve sensory stimulation can amplify plantarflexion force output. This amplification in force occurs irrespective of whether the cutaneous field that is stimulated resides on the surface that is producing the force or the opposing surface. This information may provide insights for the development of technologies to improve performance and/or rehabilitation training.


Subject(s)
Biomechanical Phenomena/physiology , Foot/physiology , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Reflex/physiology , Adult , Electric Stimulation , Electromyography , Female , Humans , Male , Young Adult
14.
Physiol Rep ; 8(6): e14406, 2020 03.
Article in English | MEDLINE | ID: mdl-32222042

ABSTRACT

The relative contribution of cutaneous sensory feedback to interlimb strength transfer remains unexplored. Therefore, this study aimed to determine the relative contribution of cutaneous afferent pathways as a substrate for cross-education by directly assessing how "enhanced" cutaneous stimulation alters ipsilateral and contralateral strength gains in the forearm. Twenty-seven right-handed participants were randomly assigned to 1-of-3 training groups and completed 6 sets of 8 repetitions 3x/week for 5 weeks. Voluntary training (TRAIN) included unilateral maximal voluntary contractions (MVCs) of the wrist extensors. Cutaneous stimulation (STIM), a sham training condition, included cutaneous stimulation (2x radiating threshold; 3sec; 50Hz) of the superficial radial (SR) nerve at the wrist. TRAIN + STIM training included MVCs of the wrist extensors with simultaneous SR stimulation. Two pre- and one posttraining session assessed the relative increase in force output during MVCs of isometric wrist extension, wrist flexion, and handgrip. Maximal voluntary muscle activation was simultaneously recorded from the flexor and extensor carpi radialis. Cutaneous reflex pathways were evaluated through stimulation of the SR nerve during graded ipsilateral contractions. Results indicate TRAIN increased force output compared with STIM in both trained (85.0 ± 6.2 Nm vs. 59.8 ± 6.1 Nm) and untrained wrist extensors (73.9 ± 3.5 Nm vs. 58.8 Nm). Providing 'enhanced' sensory input during training (TRAIN + STIM) also led to increases in strength in the trained limb compared with STIM (79.3 ± 6.3 Nm vs. 59.8 ± 6.1 Nm). However, in the untrained limb no difference occurred between TRAIN + STIM and STIM (63.0 ± 3.7 Nm vs. 58.8 Nm). This suggests when 'enhanced' input was provided independent of timing with active muscle contraction, interlimb strength transfer to the untrained wrist extensors was blocked. This indicates that the sensory volley may have interfered with the integration of appropriate sensorimotor cues required to facilitate an interlimb transfer, highlighting the importance of appropriately timed cutaneous feedback.


Subject(s)
Feedback, Sensory , Muscle Strength , Wrist/physiology , Adult , Electric Stimulation , Electromyography , Female , Humans , Male , Muscle Contraction , Muscle, Skeletal/physiology , Reflex , Young Adult
15.
Phys Sportsmed ; 48(4): 417-423, 2020 11.
Article in English | MEDLINE | ID: mdl-32067547

ABSTRACT

Objectives: In combat sports, strikes to the head are not just incidental but a deliberate and clear determinant of success. Concussion is a complex injury that is poorly understood and inappropriate practices are often observed among athletes and coaches. The purpose of this study was to investigate concussion knowledge and behavior as well as address recommendations for combat sports athletes and coaches. Methods: 70 athletes and 35 coaches from combat sports disciplines completed an online-validated survey and a personal questionnaire about concussion knowledge, training experience, and knowledge translation. Athletes were divided into subgroups for analysis according to sex (male n = 55, female n = 15), skill level (amateur n = 52, professional n = 18), and weight classes (<66.2 kg: n = 25, 66.6 to 77.5 kg: n = 30, and >78 kg: n = 15). Results: The likely absence of health-care professionals during training was confirmed by 68.5% of coaches, and athletes declared that self-diagnosis (79%) and coaches' diagnosis (43.3%) were the most used method of suspected concussion assessment. Merely 5.7% of coaches properly recognized the level of traumatic brain injury a concussion represents, 68.8% were unfamiliar with any sideline assessment tools, and only 14.3% often seek out concussion knowledge. Athletes who were aware of the level of brain injury a concussion represents performed fewer sparring sessions per week (mild: 1.27 ± 1.1; severe: 3.17 ± 2.81; p = .05, d = .89) and had a greater likelihood of reporting concussive episodes. Most professional (55.5%), female (54.5%), and under 66.2 kg (50%) athletes returned to full practice within 1 week following a concussion diagnosis. Conclusions: Relevant key gaps of knowledge and behavior were verified in combat sports athletes and coaches. The awareness of basic concepts may improve injury reporting and safer behavior in athletes. Knowledge translation strategies with accessible language are recommended for coaches, in particular on how to identify acute symptoms and perform basic assessment.


Subject(s)
Athletes/psychology , Boxing/injuries , Brain Concussion , Health Knowledge, Attitudes, Practice , Martial Arts/injuries , Mentoring , Adolescent , Adult , Brain Concussion/diagnosis , Female , Humans , Language , Male , Middle Aged , Surveys and Questionnaires , Thailand , Young Adult
16.
Exp Brain Res ; 238(2): 295-304, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31897517

ABSTRACT

Somatosensory feedback plays important roles in regulating all animal movement. The effects of sensory feedback on spinally mediated neural excitability are widely studied using cutaneous electrical stimulation paradigms. Cutaneous reflex amplitudes are reduced when stimulation is self-triggered instead of externally triggered. Altered spinal excitability and motor output are also observed following sustained stimulation with various parameters. Our purpose was to probe for interactions between mode and duration by investigating muscle responses following enhanced cutaneous stimulation. Fifteen neurologically intact participants were recruited. Cutaneous reflexes in the extensor carpi radialis (ECR) were evoked with brief (15 ms, 300 Hz) or sustained (300 ms, 50 Hz) stimulation trains. Stimulation was applied to the superficial radial or median nerve at the wrist and triggered by: (1) a computer program (random-triggered); (2) muscle contraction (EMG-triggered); (3) the participant pressing a button themselves (button-triggered). During each condition, isometric contractions were performed with ECR muscle activity maintained at 10, 25, 35, and 50% of maximal voluntary contraction. Stronger inhibitory reflexes were found following brief superficial radial nerve stimulation was EMG-triggered suggesting that modulation of cutaneous reflex excitability is specific to the timing when sensory 'cues' are applied during muscle contraction. No difference was observed following sustained stimulation applied to the superficial radial nerve meaning that brief and sustained stimulation affect the cutaneous pathways differentially. Nerve-specific responses were found between superficial radial and median nerve stimulation, such that greater inhibition was induced by EMG-triggered sustained stimulation to the median nerve. These observations are critical in moving beyond pathway phenomenology toward targeted sensory enhancement and amplified motor output in rehabilitation and training.


Subject(s)
Arm/physiology , Feedback, Sensory/physiology , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Reflex/physiology , Adult , Electric Stimulation , Electromyography , Humans , Motor Activity/physiology , Young Adult
17.
J Mot Behav ; 52(6): 643-655, 2020.
Article in English | MEDLINE | ID: mdl-31608808

ABSTRACT

Self-initiated postural adjustments commonly occur in daily life. To accessibly measure this type of dynamic balance, we developed a simple computer program to induce virtual perturbations and combined it with a commercially available balance board and portable EMG system to measure resulting self-initiated postural adjustments. When performing perturbed balance tests, safety harness with body weight support (BWS) is often used. However, influences of these harnesses on postural reactions are not well known. This study investigated the sensitivity of our assessment tool under different BWS conditions and muscle responses during postural adjustments following perturbation at different directions. Fifteen neurologically intact participants performed self-initiated postural adjustments under conditions with: (1) no harness; (2) harness with no BWS; and (3) harness with 10% BWS. Postural adjustment time and muscle activities of the lower leg were measured. We observed significant increases in postural adjustment time in the harness with no BWS condition and differneces in lower leg muscles response to virtual perturbation. Our findings suggest that the combination of our customized program with EMG is a sensitive and convenient tool to measure postural adjustments that approximate real-world scenarios. This method can be used with light body weight support to ensure safety without influencing muscle synergies.


Subject(s)
Body Weight/physiology , Leg/physiology , Postural Balance/physiology , Posture/physiology , Adult , Electromyography , Female , Humans , Male , Muscle, Skeletal/physiology , Young Adult
18.
Exp Brain Res ; 237(12): 3207-3220, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31599345

ABSTRACT

Spasticity of the ankle reduces quality of life by impeding walking and other activities of daily living. Robot-driven continuous passive movement (CPM) is a strategy for lower limb spasticity management but effects on spasticity, walking ability and spinal cord excitability (SCE) are unknown. The objectives of this experiment were to evaluate (1) acute changes in SCE induced by 30 min of CPM at the ankle joint, in individuals without neurological impairment and those with lower limb spasticity; and, (2) the effects of 6 weeks of CPM training on SCE, spasticity and walking ability in those with lower limb spasticity. SCE was assessed using soleus Hoffmann (H-) reflexes, collected prior to and immediately after CPM for acute assessments, whereas a multiple baseline repeated measures design assessed changes following 18 CPM sessions. Spasticity and walking ability were assessed using the Modified Ashworth Scale, the 10 m Walk test, and the Timed Up and Go test. Twenty-one neurologically intact and nine participants with spasticity (various neurological conditions) were recruited. In the neurologically intact group, CPM caused bi-directional modulation of H-reflexes creating 'facilitation' and 'suppression' groups. In contrast, amongst participants with spasticity, acute CPM facilitated H-reflexes. After CPM training, H-reflex excitability on both the more-affected and less-affected sides was reduced; on the more affected side H@Thres, H@50 and H@100 all significantly decreased following CPM training by 96.5 ± 7.7%, 90.9 ± 9.2%, and 62.9 ± 21.1%, respectively. After training there were modest improvements in walking and clinical measures of spasticity for some participants. We conclude that CPM of the ankle can significantly alter SCE. The use of CPM in those with spasticity can provide a temporary period of improved walking, but efficacy of treatment remains unknown.


Subject(s)
Ankle/physiopathology , Electromyography/methods , H-Reflex/physiology , Movement/physiology , Muscle Spasticity/physiopathology , Muscle Spasticity/rehabilitation , Muscle, Skeletal/physiopathology , Robotics , Spinal Cord/physiopathology , Adult , Ankle Joint/physiopathology , Electromyography/instrumentation , Female , Humans , Male , Musculoskeletal Manipulations/methods , Pilot Projects , Young Adult
19.
J Neurophysiol ; 122(5): 2085-2094, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31509473

ABSTRACT

Interlimb neural connections support motor tasks such as locomotion and cross-education strength training. Somatosensory pathways that can be assessed with cutaneous reflex paradigms assist in subserving these connections. Many studies show that stimulation of cutaneous nerves elicits reflexes in muscles widespread across the body and induces neural plasticity after training. Sensory enhancement, such as long-duration trains of transcutaneous stimulation, facilitates performance during rehabilitation training or fatiguing motor tasks. Performance improvements due to sensory stimulation may be caused by altered spinal and corticospinal excitability. However, how enhanced sensory input regulates the excitability of interlimb cutaneous reflex pathways has not been studied. Our purpose was to investigate the effects of sensory enhancement on interlimb cutaneous reflexes in wrist extensor muscles. Stimulation to provide sensory enhancement (2-s trains at 150 Hz to median or superficial radial nerves) or evoke cutaneous reflexes (15-ms trains at 300 Hz to superficial radial nerve) was applied in different arms while participants (n = 13) performed graded isometric wrist extension. Wrist extensor electromyography and cutaneous reflexes were measured bilaterally. We found amplified inhibitory reflexes in the arm receiving superficial radial and median nerve sensory enhancement with net reflex amplitudes decreased by 709.5% and 695.3% repetitively. This suggests sensory input alters neuronal excitabilities in the interlimb cutaneous pathways. These findings have potential application in facilitating motor function recovery through alterations in spinal cord excitability enhancing sensory input during targeted rehabilitation and sports training.NEW & NOTEWORTHY We show that sensory enhancement increases excitability in interlimb cutaneous pathways and that these effects are not influenced by descending motor drive on the contralateral side. These findings confirm the role of sensory input and cutaneous pathways in regulating interlimb movements. In targeted motor function training or rehabilitation, sensory enhancement may be applied to facilitate outcomes.


Subject(s)
Median Nerve/physiology , Muscle, Skeletal/physiology , Radial Nerve/physiology , Reflex/physiology , Wrist/physiology , Adult , Electric Stimulation , Electromyography , Female , Humans , Male , Young Adult
20.
Physiology (Bethesda) ; 34(5): 354-364, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31389772

ABSTRACT

Humans and cats share many characteristics pertaining to the neural control of locomotion, which has enabled the comprehensive study of cutaneous feedback during locomotion. Feedback from discrete skin regions on both surfaces of the human foot has revealed that neuromechanical responses are highly topographically organized and contribute to "sensory guidance" of our limbs during locomotion.


Subject(s)
Extremities/physiology , Locomotion/physiology , Walking/physiology , Animals , Humans , Reflex/physiology , Skin/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...