Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hum Genet ; 79(1): 37-45, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25441534

ABSTRACT

The role of consanguinity on human complex traits is an important and controversial issue. In this work we focused on the Sardinian population and examined the effect of consanguineous unions on late female fertility. During the last century the island has been characterized by a high incidence of marriages between relatives, favoured by socio economic conditions and geographical isolation, and by high fertility despite a widespread tendency to delay reproduction. Through spatial analysis techniques, we explored the geographical heterogeneity of consanguinity and late fertility, and identified in Central-Eastern Sardinia a common area with an excess of both traits, where the traits are positively associated. We found that their association did not significantly affect women's fertility in the area, despite the expected negative role of both traits. Intriguingly, this critical zone corresponds well to areas reported by previous studies as being peculiar for a high frequency of centenarians and for lower risk in pregnancy outcome. The proposed approach can be generally exploited to identify target populations on which socioeconomic, biodemographic and genetic data can be collected at the individual level, and deeper analyses carried out to disentangle the determinants of complex biological traits and to investigate their association.


Subject(s)
Consanguinity , Fertility/genetics , Maternal Age , Adult , Age Factors , Female , Genetics, Population , Geography , Humans , Italy , Middle Aged , Spatial Analysis , Young Adult
2.
Hum Biol ; 84(3): 235-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23020096

ABSTRACT

We analyze the geographic location of 77,451 different Italian surnames (17,579,891 individuals) obtained from the lists of telephone subscribers of the year 1993. By using a specific neural network analysis (Self-Organizing Maps, SOMs), we automatically identify the geographic origin of 49,117 different surnames. To validate the methodology, we compare the results to a study, previously conducted, on the same database, with accurate supervised methods. By comparing the results, we find an overlap of 97%, meaning that the SOMs methodology is highly reliable and well traces back the geographic origin of surnames at the time of their introduction (Late Middle Ages/Renaissance in Italy). SOMs results enables one to distinguish monophyletic surnames from polyphyletic ones, that is surnames having had a single geographic and historic origin from those that started to be in use, with an identical spelling, in different locations (respectively, 76.06% and 21.05% of the total). As we are interested in geographic origins, polyphyletic surnames are excluded from further analyses. By comparing the present location of each monophyletic surname to its inferred geographic origin in late Middle Ages/Renaissance, we measure the extent of the migrations having occurred in Italy since that time. We find that the percentage of individuals presently living in the very area where their surname started to be in use centuries ago is extremely variable (ranging from 22.77% to 77.86% according to the province), thus meaning that self-assessed regional identities seldom correspond to the "autochthony" they imply. For example the upper part of the Thyrennian coast (Northern Latium, Tuscany) has a strong identity but few "autochthonous" inhabitants (∼28%) having been a passageway from the North to the South of Italy.


Subject(s)
Chromosomes, Human, Y/genetics , Emigration and Immigration/statistics & numerical data , Names , Phylogeography , Algorithms , Emigration and Immigration/history , Ethnicity , Geography , History, Ancient , Humans , Italy , Neural Networks, Computer , Population Dynamics , Spatial Analysis
3.
Eur J Hum Genet ; 11(10): 802-7, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14512971

ABSTRACT

A total of 202 Sardinian male subjects were examined for 13 biallelic stable markers, the complex 49a,f/TaqI system and three microsatellites of the Y chromosome in order to investigate, through surname analysis, on a possible territorial heterogeneity inside the island. The study of geographical distribution and linguistic derivation of Sardinian surnames allow us to discover their 'probable place of origin' and reconstruct ancient genetic isolates which borders are, today, no more recognizable. The molecular analysis revealed that about 90% of the Sardinian Y chromosomes fell into haplogroups E-M35, G-M201, I-M26, J-12f2 and R-M269. In contrast with the territorial homogeneity of these haplogroups, when the individuals were distributed according to their birthplace, a significant difference between the three historically and culturally distinct geographical areas into which Sardinia can be subdivided was observed when the individuals were distributed according to the ancestral location of surnames. In particular, the major contribution to this heterogeneity is due to the 'Sardinian-specific' haplogroup I-M26 (almost completely associated with the 49a,f-Ht12/12f2-10Kb/YCAIIa-21/YCAIIb-11 compound haplotype), which shows both a significantly higher incidence in the central-eastern (archaic) area and a significantly lower frequency in the northern area. The results of this study agree with the hypothesis that the ancestral homeland of this specific subset of haplogroup I is the mountainous central-eastern area of Sardinia, where the population underwent a long history of isolation since ancient times, and highlight the informative power of the surname analysis.


Subject(s)
Chromosomes, Human, Y , Genetic Markers , Alleles , Ethnicity , Gene Frequency , Haplotypes , Humans , Italy , Male , Microsatellite Repeats , Mutation , Names , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...