Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 36348, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796342

ABSTRACT

The clinical assessment of multiple organ dysfunctions at early stages is recognized to be an important factor in prompting definitive treatment decisions that prevent irreversible organ damage. In this article, we propose a real-time, label-free, and multiplex nanoenhanced SPRi platform to quantitatively assess two biomarkers, kidney injury molecule (KIM-1) and high mobility group box-1 (HMGB-1) simultaneously in buffer. Our work involves three major contributions in the design of the immunosensor: (1) we applied site-specific immobilization of antibodies to the solid surface that avoids loss of biological activity caused by covalent attachment; (2) we constructed a well-blocked sensor surface that exhibits minimal non-specific adsorption for singleplex measurements of each biomarker in buffer; and (3) we adopted a sandwich assay that implements functionalized quantum dots (NanoEnhancers) as signal amplifiers to achieve a sensitivity level of 5 pg/mL for KIM-1 and HMGB-1 in buffer. We foresee great potential and success in extending this multiplex and ultra-sensitive platform to assess a variety of other emerging clinical biomarkers at low concentrations and in complex matrices.


Subject(s)
Biosensing Techniques/methods , HMGB1 Protein/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Antibodies/metabolism , Biomarkers/metabolism , Humans , Liver Failure, Acute/diagnosis , Liver Failure, Acute/metabolism , Protein Array Analysis , Quantum Dots
2.
Sci Rep ; 6: 26714, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27216648

ABSTRACT

Progesterone is a steroid hormone that plays a central role in the female reproductive processes such as ovulation and pregnancy with possible effects on other organs as well. The measurement of progesterone levels in bodily fluids can assist in early pregnancy diagnosis and can provide insight for other reproductive functions. In this work, the detection of progesterone was examined by integrating novel aptamer development with a nanoEnhanced surface plasmon resonance imaging sensor. First, we developed X-aptamers and selected them for binding to progesterone. Then, we took advantage of the multi-array feature of SPRi to develop an optimized biosensor capable of simultaneously screening the 9 X-aptamers developed to determine the binding capabilities of each aptamer. The sensor surface design conditions were further optimized for the sandwich assay, which employed nanoEnhancers (NIR-streptavidin coated quantum dots) for ultrasensitive detection of progesterone molecules. The assay designed was examined over a concentration range of 1.575 ng/mL to 126 µg/mL resulting in a limit of detection (LOD) of 1.575 ng/mL (5 nM) in phosphate buffer.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Progesterone/analysis , Buffers , Sensitivity and Specificity
3.
J Vis Exp ; (107)2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26780354

ABSTRACT

Sensitive and selective methods for the detection of human growth hormone (hGH) over a wide range of concentrations (high levels of 50-100 ng ml(-) (1) and minimum levels of 0.03 ng ml(-) (1)) in circulating blood are essential as variable levels may indicate altered physiology. For example, growth disorders occurring in childhood can be diagnosed by measuring levels of hGH in blood. Also, the misuse of recombinant hGH in sports not only poses an ethical issue it also presents serious health threats to the abuser. One popular strategy for measuring hGH misuse, relies on the detection of the ratio of 22 kDa hGH to total hGH, as non-22 kDa endogenous levels drop after exogenous recombinant hGH (rhGH) administration. Surface plasmon resonance imaging (SPRi) is an analytical tool that allows direct (label-free) monitoring and visualization of biomolecular interactions by recording changes of the refractive index adjacent to the sensor surface in real time. In contrast, the most frequently used colorimetric method, enzyme-linked immunosorbent assay (ELISA) uses enzyme labeled detection antibodies to indirectly measure analyte concentration after the addition of a substrate that induces a color change. To increase detection sensitivity, amplified SPRi uses a sandwich assay format and near infrared quantum dots (QDs) to increase signal strength. After direct SPRi detection of recombinant rhGH in spiked human serum, the SPRi signal is amplified by the sequential injection of detection antibody coated with near-infrared QDs (Nano-SPRi). In this study, the diagnostic potential of direct and amplified SPRi was assessed for measuring rhGH spiked in human serum and compared directly with the capabilities of a commercially available ELISA kit.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Human Growth Hormone/blood , Surface Plasmon Resonance/methods , Humans , Nanotechnology/methods , Quantum Dots , Recombinant Proteins/blood
4.
Nanomedicine (Lond) ; 10(11): 1833-46, 2015.
Article in English | MEDLINE | ID: mdl-26080702

ABSTRACT

Surface plasmon resonance (SPR) is a popular technique that allows for sensitive, specific, label-free and real-time assessment of biomolecular interactions. SPR is a nondestructive, modular and flexible tool for various applications in biomedical sciences ranging from cell sorting, cell surface characterization and drug discovery. In this review, we will discuss more specifically how SPR is used to monitor the dynamics of various types of cellular binding events and morphological adherence changes in response to external stimuli.


Subject(s)
Cell Tracking , Drug Delivery Systems , Molecular Imaging , Surface Plasmon Resonance , Animals , Biofilms/growth & development , Biophysical Phenomena , Escherichia coli/growth & development , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...