Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Odontol Scand ; 71(6): 1579-87, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23627845

ABSTRACT

OBJECTIVES: The present in-vitro study examined the effects of different biomaterials on early root surface colonization by human periodontal ligament (PDL) fibroblasts using confocal-laser-scanning-microscopy (CLSM). MATERIALS AND METHODS: Fifteen periodontally-diseased teeth were extracted, treated with scaling/root planing and longitudinally cut to obtain 30 root fragments. Fragments were treated either with 24% EDTA following application of enamel matrix derivative (EMD), 24% EDTA or EMD only, nanocrystalline hydroxyapatite (NHA) paste or oily calcium hydroxide suspension (OCHS) for 1 h each. The analogue untreated root specimens served as controls. Root fragments were incubated with human PDL fibroblasts and cellular proliferation and morphology were evaluated after 1, 3, 5 and 8 days using CLSM-visualization and image recognition software. RESULTS: The rate of cellular proliferation was different among treatment modalities examined (p = 0.019). Except treatment with NHA paste all treatment modalities improved cellular proliferation on root surfaces at all different points of time compared with the control specimens. A significant difference between treatment modalities was observed between EMD and NHA paste (p = 0.008). No synergistic effect could be demonstrated comparing root surface conditioning with 24% EDTA and EMD application compared to 24% EDTA or EMD application only. CONCLUSION: The present results suggest that initial root surface colonization by PDL fibroblasts may be enhanced by root surface conditioning with 24% EDTA and application of EMD, application of 24% EDTA or EMD alone and OCHS. The addition of 24% EDTA for root surface conditioning prior to EMD application provided no synergistic effects in terms of early root surface colonization by PDL fibroblasts.


Subject(s)
Biocompatible Materials , Periodontal Ligament/cytology , Tooth Root/microbiology , Fibroblasts/cytology , Humans , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...