Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35888346

ABSTRACT

Leishmaniasis is one of the biggest health problems in the world. Traditional therapeutic methods still depend on a small range of products, mostly chemically. However, the treatment with these drugs is expensive and can cause serious adverse effects, and they have inconsistent effectiveness due to the resistance of parasites to these drugs. The treatment of leishmanial disease has always been a challenge for researchers. The development of nanoscale metals such as silver has attracted significant attention in the field of medicine. The unique characteristic features of silver nanoparticles (AgNPs) make them effective antileishmanial agents. In recent years, green nanotechnology has provided the development of green nanoparticle-based treatment methods for Leishmaniasis. Although there are many studies based on green nanoparticles against Leishmania parasites, this is the first study on the antileishmanial effect of biosynthesized AgNPs using an aqueous extract of Eucalyptus camaldulensis leaves (AEECL) as a reducing agent of silver ions. Different parameters such as AgNO3 concentration, AEECL concentration, and reaction time were studied to investigate the optimum factors for the preparation of stable and small-sized silver nanoparticles. The spherical shape of colloidal nanosilver (CN-Ag) was confirmed by atomic force microscope (AFM) and scanning electron microscope (SEM) images with sizes of 27 and 12 nm, respectively. A high density of nanoparticles with a small size of 10 nm has been confirmed from dynamic light scattering (DLS) analysis. The zeta potential value of 23 mV indicated that colloidal silver nanoparticles were stable. The nano-tracker analysis (NTA) showed the Brownian motion of silver nanoparticles with a hydrodynamic diameter of 31 nm. The antioxidant property of CN-Ag was determined using the stable radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. In this study, a significant cytotoxic effect of biosynthesized CN-Ag has been shown against Leishmania tropica parasites at low concentrations (1.25, 2.5, and 3.75 µg/mL). These results could be used as a future alternative drug or could be a supportive treatment for Leishmaniasis.

2.
ACS Omega ; 7(16): 13475-13493, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35559140

ABSTRACT

Hypericum perforatum Linn (St. John's wort) is a popular and widespread medicine in Syria, which is used for a wide range of conditions, including gastrointestinal diseases, heart disease, skin diseases, and psychological disorders. This widespread use prompted us to identify the main compounds of this plant from Syria that are responsible for its medicinal properties, especially since its components differ between countries according to the nature of the soil, climate, and altitude. This is, to the best of our knowledge, the first report in which St. John's wort, a plant native to Syria, is extracted using different solvents and its most important compounds are identified. In this study, the dried above-ground parts, i.e., leaves, stem, petals, and flowers, were extracted using different solvents (water, ethanol, methanol, and acetone) and extraction protocols. By increasing the polarity of the solvent, higher yields were obtained, indicating that mainly hydrophobic compounds were extracted. Therefore, we conclude that extraction using the tea method or using a mixture of water and organic solvents resulted in higher yields compared with pure organic solvents or continuous boiling with water for long periods. The obtained extracts were analyzed using high-performance liquid chromatography equipped with a diode array detector (HPLC-DAD), coupled with UV-visible spectrophotometry at a full spectrum (200-800 nm). The HPLC spectra of the extracts were almost identical at three wavelengths (260 nm for phloroglucinols (hyperforin and derivates), 590 nm for naphthodianthrones (hypericins), and 350 nm for other flavonols, flavones, and caffeoylquinic acids), with differences observed only in the intensity of the peaks. This indicates that the same compounds were obtained using different solvents, but in different amounts. Five standards (chlorogenic acid, quercetin, quercitrin hydrate, hyperoside, and hypericin) were used, and a comparison with retention times and ultraviolet (UV) spectra reported in the literature was performed to identify 10 compounds in these extracts: hyperforin, adhyperforin, hypericin, rutin, quercetin, quercitrin, quercitrin hydrate, hyperoside, biapigenin, and chlorogenic acid. Although the European Pharmacopoeia still describes ultraviolet spectroscopy as a method for determining the quantity of Hyperici herba, interference from other metabolites can occur. Combined HPLC-DAD and electrospray ionization-mass spectrometry (LC-ESI-MS) in the positive mode have therefore also been used to confirm the presence of these compounds in the extracts by correlating known masses with the identified masses or through characteristic fragmentation patterns. Total phenolic contents of the extracts were determined by the Folin-Ciocalteu assay, and antioxidant activity was evaluated as free radical scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The results indicate that the aqueous extracts prepared by the tea method gave the highest total phenols, while the pure organic solvents gave very low phenols. Also, the extracts that contain the largest amount of phenols gave lower IC50 values or higher antioxidant activity than that of others.

3.
Micromachines (Basel) ; 13(5)2022 May 15.
Article in English | MEDLINE | ID: mdl-35630244

ABSTRACT

Environmentally green synthesis of stable polyvinyl pyrrolidone (PVP)-capped silver nanoparticles (PVP-AgNPs) was successfully carried out. The present study focused on investigating the influence of adding PVP during the synthesis process on the size, optical properties and antibacterial effect of silver nanoparticles produced. An aqueous extract of Eucalyptus camaldulensis leaves was used as a reducing agent. The effects of different PVP concentrations and reducing time on the synthesis of nanoparticles (NPs) were characterized by UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive spectrum (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and nano tracker analysis (NTA). The addition of PVP was studied. The prepared PVP-AgNPs were spherical with an average size of 13 nm. FTIR analysis confirmed that PVP protects AgNPs by a coordination bond between silver nanoparticles and both N and O of PVP. DLS results indicated the good dispersion of silver nanoparticles. PVP-AgNPs were found to be stable for nearly 5 months. Antibacterial studies through the agar well diffusion method confirmed that silver nanoparticles synthesized using PVP had no inhibitor activity toward Gram-positive and Gram-negative bacteria as opposed to silver nanoparticles prepared without adding PVP, which showed a significant antibacterial activity towards some of the tested pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL