Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 391: 122249, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32097876

ABSTRACT

Heterogeneous photocatalysis has been proven to be a promising approach to overcome the great challenges encountered with conventional technologies for environmental remediation. Herein, for the first time, a novel hierarchical architecture of nitrogen-doped TiO2@Bi2WxMo1-xO6 (N-T@BWMO-x, x = 0-1.0) was rationally designed and fabricated through an electrospinning route followed by a solvothermal process. The photocatalytic activity of the as-prepared samples was evaluated based on the degradation of tetracycline hydrochloride (TC) under visible-light irradiation. The results indicated that the molar fraction of W/Mo has a strong impact on the photocatalytic efficiency and photoelectrochemical performance of the N-T@BWMO composites. Compared to N-TiO2 and the binary composites, N-T@BWMO-0.25 exhibited outstanding photocatalytic activity and significant cycling stability. The enhanced photocatalytic activity can be synergistically linked to the excellent native adsorption, extended light-harvesting region, hierarchical structure, and strong interfacial interaction between N-TiO2 and BWMO, which can effectively prolong the lifetime of charge-carriers. Moreover, active species-trapping and electron paramagnetic resonance results confirmed that holes and superoxide radicals were the dominant active species responsible for TC removal. A possible photocatalytic mechanism underlying the degradation of TC by N-T@BWMO-0.25 is also proposed. We expect that our findings will provide new insights into the use of highly efficient core-shell heterostructure photocatalysts, with potential applications in environmental decontamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...