Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 38(2): 276-280, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27932507

ABSTRACT

BACKGROUND AND PURPOSE: The central sulcus is an important anatomic landmark, but most methods of identifying it rely on variable gyral and sulcal patterns. We describe and assess the accuracy of reduced gray-white contrast along the central sulcus, an observation we term the "white gray sign." MATERIALS AND METHODS: We conducted a retrospective review of 51 fMRIs with a T1-weighted 3D inversion recovery fast-spoiled gradient-echo and concomitant hand-motor fMRI, which served as confirmation for the location of the central sulcus. To measure gray-white contrast across the central and adjacent sulci, we performed a quantitative analysis of 25 normal hemispheres along the anterior and posterior cortices and intervening white matter of the pre- and postcentral gyri. 3D inversion recovery fast-spoiled gradient-echo axial images from 51 fMRIs were then evaluated by 2 raters for the presence of the white gray sign as well as additional established signs of the central sulcus: the bracket, cortical thickness, omega, and T signs. RESULTS: The mean gray-white contrast along the central sulcus was 0.218 anteriorly and 0.237 posteriorly, compared with 0.320 and 0.295 along the posterior precentral and anterior postcentral sulci, respectively (P < .001). Both raters correctly identified the central sulcus in all 35 normal and 16 abnormal hemispheres. The white gray sign had the highest agreement of all signs between raters and was rated as present the most often among all the signs. CONCLUSIONS: Reduced gray-white contrast around the central sulcus is a reliable sign for identification of the central sulcus on 3D inversion recovery fast-spoiled gradient-echo images.


Subject(s)
Anatomic Landmarks/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Female , Humans , Imaging, Three-Dimensional/methods , Male , Retrospective Studies
2.
AJNR Am J Neuroradiol ; 37(10): 1808-1815, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27282860

ABSTRACT

BACKGROUND AND PURPOSE: Magnetic susceptibility measured with quantitative susceptibility mapping has been proposed as a biomarker for demyelination and inflammation in patients with MS, but investigations have mostly been on white matter lesions. A detailed characterization of cortical lesions has not been performed. The purpose of this study was to evaluate magnetic susceptibility in both cortical and WM lesions in MS by using quantitative susceptibility mapping. MATERIALS AND METHODS: Fourteen patients with MS were scanned on a 7T MR imaging scanner with T1-, T2-, and T2*-weighted sequences. The T2*-weighted sequence was used to perform quantitative susceptibility mapping and generate tissue susceptibility maps. The susceptibility contrast of a lesion was quantified as the relative susceptibility between the lesion and its adjacent normal-appearing parenchyma. The susceptibility difference between cortical and WM lesions was assessed by using a t test. RESULTS: The mean relative susceptibility was significantly negative for cortical lesions (P < 10-7) but positive for WM lesions (P < 10-22). A similar pattern was also observed in the cortical (P = .054) and WM portions (P = .043) of mixed lesions. CONCLUSIONS: The negative susceptibility in cortical lesions suggests that iron loss dominates the susceptibility contrast in cortical lesions. The opposite susceptibility contrast between cortical and WM lesions may reflect both their structural (degree of myelination) and pathologic (degree of inflammation) differences, in which the latter may lead to a faster release of iron in cortical lesions.

3.
Neuroimage ; 41(4): 1177-83, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18486492

ABSTRACT

Our objective was to investigate whether asymptomatic carriers of apolipoprotein E epsilon4 [APOE-4] demonstrate pathological differences and atrophy in medial temporal lobe (MTL) subregions. We measured cortical thickness and volume in MTL subregions (hippocampal CA fields 1, 2 and 3; dentate gyrus; entorhinal cortex; subiculum; perirhinal cortex; parahippocampal cortex; and fusiform gyrus) using a high-resolution in-plane (0.4x0.4 mm) MRI sequence in 30 cognitively normal volunteers (14 APOE-4 carriers, 16 non-carriers, mean age 57 years). A cortical unfolding procedure maximized the visibility of this convoluted cortex, providing cortical ribbon thickness measures throughout individual subregions of the hippocampus and surrounding cortex. APOE-4 carriers had reduced cortical thickness compared with non-carriers in entorhinal cortex (ERC) and the subiculum (Sub), but not in the main hippocampal body or perirhinal cortex. Average cortical thickness was 14.8% lower (p=1.0e(- 6)) for ERC and 12.6% lower (p=6.8e(- 5)) for Sub in APOE-4 carriers. Standard volumetric measures of the same regions showed similar, but non-significant trends. Cognitively intact carriers of APOE-4 show regionally specific thinning of the cortical ribbon compared to APOE-3 carriers; cortical thickness may be a more sensitive measure of pathological differences in genetic risk subjects than standard volumetry.


Subject(s)
Apolipoprotein E4/genetics , Cognition/physiology , Hippocampus/anatomy & histology , Alleles , Discrimination, Psychological/physiology , Entorhinal Cortex/anatomy & histology , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Statistical , Neuropsychological Tests
4.
Anat Rec ; 265(2): 111-20, 2001 04.
Article in English | MEDLINE | ID: mdl-11323773

ABSTRACT

The hippocampus is a region of the brain that is crucial to memory function. Functional neuroimaging allows for the noninvasive investigation of the neurophysiology of human memory by observing changes in blood flow in the brain. We have developed a technique that employs high-resolution functional magnetic resonance imaging (fMRI) in combination with cortical unfolding to provide activation maps of the hippocampal region that surpass in anatomic and functional detail other methods of in vivo human brain mapping of the medial temporal lobe. We explain the principles behind this method and illustrate its application to a novelty-encoding paradigm.


Subject(s)
Brain Mapping , Hippocampus/anatomy & histology , Magnetic Resonance Imaging/methods , Hippocampus/physiology , Humans
5.
Hum Brain Mapp ; 10(4): 204-11, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10949058

ABSTRACT

The well-known variability in the distribution of high frequency electromagnetic fields in the human body causes problems in the analysis of structural information in high field magnetic resonance images. We describe a method of compensating for the purely intensity-based effects. In our simple and rapid correction algorithm, we first use statistical means to determine the background image noise level and the edges of the image features. We next populate all "noise" pixels with the mean signal intensity of the image features. These data are then smoothed by convolution with a gaussian filter using Fourier methods. Finally, the original data that are above the noise level are normalized to the smoothed images, thereby eliminating the lowest spatial frequencies in the final, corrected data. Processing of a 124 slice, 256 x 256 volume dataset requires under 70 sec on a laptop personal computer. Overall, the method is less prone to artifacts from edges or from sensitivity to absolute head position than are other correction techniques. Following intensity correction, the images demonstrated obvious qualitative improvement and, when subjected to automated segmentation tools, the accuracy of segmentation improved, in one example, from 35.3% to 84.7% correct, as compared to a manually-constructed gold standard.


Subject(s)
Algorithms , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Radio Waves , Artifacts , Humans
6.
Neuroimage ; 11(6 Pt 1): 668-83, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10860795

ABSTRACT

We describe a new application of cortical unfolding to high-resolution functional magnetic resonance imaging (fMRI) of the human hippocampal region. This procedure includes techniques to segment and unfold the hippocampus, allowing the fusiform, parahippocampal, perirhinal, entorhinal, subicular, and CA fields to be viewed and compared across subjects. Transformation parameters derived from unfolding high-resolution structural images are applied to coplanar, functional images, yielding two-dimensional "unfolded" activation maps of hippocampi. The application of these unfolding techniques greatly enhances the ability of fMRI to localize and characterize signal changes within the medial temporal lobe. Use of this method on a novelty-encoding paradigm reveals a temporal dissociation between activation along the collateral sulcus and activation in the hippocampus proper.


Subject(s)
Hippocampus/anatomy & histology , Hippocampus/physiology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Adult , Brain Mapping/methods , Computer Simulation , Female , Humans , Male , Models, Neurological , Photic Stimulation
7.
Appl Biochem Biotechnol ; 41(3): 219-31, 1993 Jun.
Article in English | MEDLINE | ID: mdl-8379664

ABSTRACT

The 17" x 14" X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2-4% of the bulky and costly 30-95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available only through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 microns, higher speed (scan up to 17" x 14" molecular X-ray film in 48 s), 1-32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability. Its programs image the film, read DNA sequences automatically, and detect gene mutation. In parallel to the wide laboratory use of PC computers instead of mainframes, this PS scanner might become an integral part of a PC-PS powerful and cost-effective system where the PS performs the digital imaging and the PC acts on the data.


Subject(s)
DNA/analysis , Mutation , Sequence Analysis, DNA/instrumentation , Autoradiography , Cost-Benefit Analysis , DNA/chemistry , Electrophoresis, Polyacrylamide Gel , Image Processing, Computer-Assisted , Immunoblotting , Microcomputers , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...