Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Innov Card Rhythm Manag ; 9(11): 3417-3424, 2018 Nov.
Article in English | MEDLINE | ID: mdl-32494477

ABSTRACT

The use of subcutaneous implantable cardioverter-defibrillators (S-ICDs) has increased over time. Device-based algorithms have been developed to reduce inappropriate shocks. New implant techniques have been developed including the two-incision technique and the placement of the generator submuscularly. More patients are being implanted without general anesthesia. This review summarizes the newest S-ICD features, surgical implantation methods, and device-related safety and efficacy findings.

3.
Pulm Circ ; 4(4): 612-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25610597

ABSTRACT

The inotropic effects of prostacyclins in chronic pulmonary arterial hypertension (PAH) are unclear and may be important in directing patient management in the acute setting. We sought to study the effects of an acute intravenous (IV) infusion of iloprost on right ventricular (RV) contractility in a rat model of chronic PAH. Rats were treated with monocrotaline, 60 mg/kg intraperitoneally, to induce PAH. Six weeks later, baseline hemodynamic assessment was performed with pressure-volume and Doppler flow measurements. In one group of animals, measurements were repeated 10-15 minutes after IV infusion of a fixed dose of iloprost (20 µg/kg). A separate group of rats underwent dose-response assessment. RV contractility and RV-pulmonary artery coupling were assessed by the end-systolic pressure-volume relationship (ESPVR) and end-systolic elastance/effective arterial elastance (Ees/Ea). RV cardiomyocytes were isolated, and intracellular cAMP (cyclic adenosine monophosphate) concentration was measured with a cAMP-specific enzyme immunoassay kit. Animals had evidence of PAH and RV hypertrophy. Right ventricle/(left ventricle + septum) weight was 0.40 ± 0.03. RV systolic pressure (RVSP) was 39.83 ± 1.62 mmHg. Administration of iloprost demonstrated an increase in the slope of the ESPVR from 0.29 ± 0.02 to 0.42 ± 0.05 (P < .05). Ees/Ea increased from 0.63 ± 0.07 to 0.82 ± 0.06 (P < .05). The RV contractility index (max dP/dt normalized for instantaneous pressure) increased from 94.11 to 114.5/s (P < .05), as did the RV ejection fraction, from 48.0% to 52.5% (P < .05). This study suggests a positive inotropic effect of iloprost on a rat model of chronic PAH.

5.
Am J Physiol Heart Circ Physiol ; 302(12): H2518-27, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22505641

ABSTRACT

Caveolin-1 (Cav-1)-/- mice develop mild pulmonary hypertension as they age. In this study, we sought to determine the effect of chronic hypoxia, an established model of pulmonary hypertension, on young Cav-1-/- mice with no measurable signs of pulmonary hypertension. Exposure of Cav-1-/- mice to chronic hypoxia resulted in an initial rise in right ventricular (RV) systolic pressure (RVSP) similar to wild-type (WT) mice. By three weeks RVSP decreased in the Cav-1-/- mice, whereas it was maintained in WT mice. The drop in RVSP in Cav-1-/- mice was accompanied by decreased cardiac output, increased RV hypertrophy, RV interstitial fibrosis, decreased RV sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a mRNA and decreased RV function compared with WT mice. Importantly, minimal differences were noted in pulmonary vascular remodeling between WT and Cav-1-/- mice, and left ventricular function was normal in hypoxic Cav-1-/- mice. Mechanistically, increased endothelial nitric oxide synthase uncoupling and increased tyrosine nitration of protein kinase G were detected in the RV of Cav-1-/- mice. These hemodynamic, histological, and molecular changes were prevented in Cav-1-/- mice expressing an endothelial-specific Cav-1 transgene or by nitric oxide synthase inhibition. These data suggest that, in Cav-1-/- mice, increased oxidative/nitrosative stress due to endothelial nitric oxide synthase uncoupling modifies the response of the RV to pressure overload, accelerating the deterioration of RV function.


Subject(s)
Blood Pressure/physiology , Caveolin 1/genetics , Heart Failure/etiology , Hypoxia/complications , Animals , Cardiac Output/physiology , Cyclic GMP-Dependent Protein Kinases/metabolism , Heart Failure/genetics , Heart Failure/physiopathology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/genetics , Hypoxia/physiopathology , Lung/blood supply , Lung/metabolism , Lung/physiopathology , Mice , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...