Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 341: 108794, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32446941

ABSTRACT

BACKGROUND: Concentration is a variable aspect of an odor signal and determines the operation range of olfactory receptor neurons (ORNs). A concentration increase is perceived as an odor stimulus. The role that the rate of concentration increase plays thereby has been studied with electrophysiological techniques in ORNs of the cockroach. A key prerequisite for these studies was the development of an air dilution flow olfactometer that allowed testing the same change in concentration at various rates. NEW METHOD: The rate of concentration change was controlled and varied by changing the mixing ratio of odor-saturated and clean air by means of proportional valves. Their input voltages were phase shifted by 180° to hold the mixed air at a particular constant volume flow rate. RESULTS: Using this stimulation technique, we identified, in a morphologically distinct sensillum on the cockroach's antenna, antagonistically responding ON and OFF ORNs which display a high sensitivity for slow changes in odor concentration. COMPARISON WITH EXISTING METHODS: The olfactometer is unique because it enables delivering slowly oscillating concentration changes. By varying the oscillation period, the individual effects of the instantaneous odor concentration and its rate of change on the ORNs' responses can be determined. CONCLUSIONS: The olfactometer provides a new experimental approach in the study of odor coding and opens the door for improved comparative studies on olfactory systems. It would be important to gain insight into the ORNs' ability to detect the rate of concentration change in other insects that use odors for orientation in different contexts.


Subject(s)
Cockroaches , Olfactory Receptor Neurons , Animals , Odorants
2.
Eur J Neurosci ; 19(12): 3389-92, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15217396

ABSTRACT

In insects, information about food odour is encoded by olfactory receptor cells with characteristic response spectra, located in several types of cuticular sensilla. Within short, hair-like sensilla on the cockroach's antenna, antagonistic pairs of olfactory receptor cells shape information inflow to the CNS by providing excitatory responses for both increases and decreases in food odour concentration. The segregation of food odour information into parallel ON and OFF responses suggests that temporal concentration changes become enhanced in the sensory output. When food odour concentration changes slowly and continuously up and down with smooth transition from one direction to another, the ON and OFF olfactory cells not only signal a succession of odour concentrations but also the rate with which odour concentration happens to be changing. Access to the values of such cues is of great use to an insect orientating to an odour source. With them they may extract concentration gradients from odour plumes.


Subject(s)
Cockroaches/physiology , Food , Odorants , Olfactory Receptor Neurons/physiology , Action Potentials/physiology , Animals , Electrophysiology , Male , Olfactory Receptor Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...