Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549292

ABSTRACT

Due to the lack of advanced methods to clean plastic waste from organic contaminants, this study aimed at evaluating supercritical extraction as a decontamination method. Oil-adhesive high-density polyethylene (HD-PE) oil containers were subjected to supercritical extraction using supercritical carbon dioxide. The extraction was conducted at 300 bar, applying various temperatures (i.e., 70, 80 and 90 °C). The study assessed the impact of temperature on the decontamination efficiency. The variation in the samples' quality was first analyzed using near infrared (NIR) spectroscopy. An analysis of the content of polycyclic aromatic hydrocarbons (PAHs) was followed. Samples treated at 70 and 80 °C showed higher extraction efficiencies, in spite of the lower extraction temperatures. The NIR analysis showed that the plastic specimens did not experience degradation by the supercritical decontamination method. Moreover, the NIR spectra of the extracted oil showed the presence of a wide range of compounds, some of which are hazardous. This has been confirmed by a GC-MS analysis of the extracted oil. Based on the provided assessment, the quality of the decontaminated HD-PE plastic samples-from a contamination point of view-is enhanced in comparison to untreated samples. The level of PAHs contamination decreased to be within the allowed limits defined by the REACH regulation, and also met the specifications of the German Product Safety Committee. This study proved the effectiveness of the supercritical extraction using CO2 in extracting organic contaminants from plastics, while maintaining their quality.

2.
Sci Technol Adv Mater ; 15(1): 015004, 2014 Feb.
Article in English | MEDLINE | ID: mdl-27877646

ABSTRACT

The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 µm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.

3.
Sci Technol Adv Mater ; 14(3): 035006, 2013 Jun.
Article in English | MEDLINE | ID: mdl-27877579

ABSTRACT

Straining of PVA/PE and PVA/PP blends (70:30) is monitored by small-angle x-ray scattering (SAXS). Sheet-extruded films with different predraw ratio are investigated. The discrete SAXS of predrawn samples originates from polyolefin nanofibrils inside of polyolefin microfibrils immersed in a PVA matrix. PE nanofibrils deform less than the macroscopic strain without volume change. PP nanofibrils experience macroscopic strain. They lengthen but their diameter does not decrease. This is explained by strain-induced crystallization of PP from an amorphous depletion shell around the core of the nanofibril. The undrawn PVA/PE film exhibits isotropic semicrystalline nanostructure. Undrawn PVA/PP holds PP droplets containing oriented stacks of semicrystalline PP like neat precursors of hard-elastic thermoplasts. Respective predrawn films are softer than the undrawn material, indicating conversion into the hard-elastic state. Embedding of the polyolefin significantly retards neck formation. The polyolefin microfibrils can easily be extracted from the water-soluble matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...