Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(13): 3581-3590, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38527099

ABSTRACT

Terahertz time-domain spectroscopy and differential scanning calorimetry were used to study the role of the dynamics of biomolecules decoupled from solvent effects. Lyophilized sucrose exhibited steadily increasing absorption with temperature as anharmonic excitations commenced as the system emerged from a deep minimum of the potential energy landscape where harmonic vibrations dominate. The polypeptide bacitracin and two globular proteins, lysozyme and human serum albumin, showed a more complex temperature dependence. Further analysis focused on the spectral signature below and above the boson peak. We found evidence of the onset of anharmonic motions that are characteristic for partial unfolding and molecular jamming in the dry biomolecules. The activation of modes of the protein molecules at temperatures comparable to the protein dynamical transition temperature was observed in the absence of hydration. No evidence of Fröhlich coherence, postulated to facilitate biological function, was found in our experiments.


Subject(s)
Proteins , Water , Humans , Proteins/chemistry , Solvents , Temperature , Water/chemistry
2.
Int J Pharm X ; 5: 100186, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37396627

ABSTRACT

Fully automated at-line terahertz time-domain spectroscopy in transmission mode is used to measure tablet porosity for thousands of immediate release tablets. The measurements are rapid and non-destructive. Both laboratory prepared tablets and commercial samples are studied. Multiple measurements on individual tablets quantify the random errors in the terahertz results. These show that the measurements of refractive index are precise, with the standard deviation on a single tablet being about 0.002, with variation between measurements being due to small errors in thickness measurement and from the resolution of the instrument. Six batches of 1000 tablets each were directly compressed using a rotary press. The tabletting turret speed (10 and 30 rpm) and compaction pressure (50, 100 and 200 MPa) were varied between the batches. As expected, the tablets compacted at the highest pressure have far lower porosity than those compacted at the lowest pressure. The turret rotation speed also has a significant effect on porosity. This variation in process parameters resulted in batches of tablets with an average porosity between 5.5 and 26.5%. Within each batch, there is a distribution of porosity values, the standard deviation of which is in the range 1.1 to 1.9%. Destructive measurements of disintegration time were performed in order to develop a predictive model correlating disintegration time and tablet porosity. Testing of the model suggested it was reasonable though there may be some small systematic errors in disintegration time measurement. The terahertz measurements further showed that there are changes in tablet properties after storage for nine months in ambient conditions.

3.
Int J Pharm ; 642: 123165, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37356510

ABSTRACT

Roller compaction before tableting is a common unit operation to increase the processability of powders. Terahertz time-domain spectroscopy (THz-TDS) has recently been introduced as a potential process analytical technology (PAT) for measuring tablet porosity based on the refractive index of the tablet. Tablet porosity is a governing parameter for tablet disintegration and dissolution. The first aim of this study was to investigate tablets prepared from roller-compacted materials with THz-TDS to explore its usefulness for particle size evaluation of granules in tablets. Secondly, the impact of roller compaction and granule size before tablet compression on the established THz-TDS based measurement of tablet porosity was investigated. Microcrystalline cellulose and α-lactose monohydrate were roller compacted separately at five specific compaction forces (2, 4, 8, 12, and 16 kN cm-1) and fractionated into three size fractions. Tablets were prepared from the fractionated and unfractionated granules at twelve tableting pressures and subjected to THz-TDS transmission measurements. It was possible to use the scattering behaviour of the tablets at terahertz frequencies to describe the granulated materials' particle size changes during tableting. At the same time, prediction of porosity was impaired due to the deviation of the refractive index in strongly scattering samples. A correction method was introduced in which the porosity error was corrected based on the tablet's scattering behaviour, resulting in an improved prediction of tablet porosity. In conclusion, THz-TDS is considered a promising technique for the process monitoring of tableting based on its sensitivity to porosity and particle size changes within the tablet non-destructively, with a possible application as part of an in-process control strategy of the tableting of granulated or non-granulated materials.


Subject(s)
Particle Size , Porosity , Tablets/chemistry
4.
Pharmaceutics ; 15(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36839812

ABSTRACT

Pharmaceutical tablet disintegration is a critical process for dissolving and enabling the absorption of the drug substance into the blood stream. The tablet disintegration process consists of multiple connected and interdependent mechanisms: liquid penetration, swelling, dissolution, and break-up. One key dependence is the dynamic change of the pore space in a tablet caused by the swelling of particles while the tablet takes up liquid. This study analysed the changes in the pore structure during disintegration by coupling the discrete element method (DEM) with a single-particle swelling model and experimental liquid penetration data from terahertz-pulsed imaging (TPI). The coupled model is demonstrated and validated for pure microcrystalline cellulose (MCC) tablets across three porosities (10, 15, and 22%) and MCC with three different concentrations of croscarmellose sodium (CCS) (2, 5, and 8% w/w). The model was validated using experimental tablet swelling from TPI. The model captured the difference in the swelling behaviour of tablets with different porosities and formulations well. Both the experimental and modelling results showed that the swelling was lowest (i.e., time to reach the maximum normalised swelling capacity) for tablets with the highest CCS concentration, cCCS = 8%. The simulations revealed that this was caused by the closure of the pores in both the wetted volume and dry volume of the tablet. The closure of the pores hinders the liquid from accessing other particles and slows down the overall swelling process. This study provides new insights into the changes in the pore space during disintegration, which is crucial to better understand the impact of porosity and formulations on the performance of tablets.

5.
Int J Pharm ; 635: 122726, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36812951

ABSTRACT

The disintegration process of pharmaceutical solid dosage forms commences on contact with the dissolution medium and continues with subsequent spontaneous imbibition of the medium in the tablet matrix. Identifying the location of the liquid front in situ during imbibition, therefore, plays a significant role in understanding and modelling the disintegration process. Terahertz pulsed imaging (TPI) technology can be used to investigate this process by its ability to penetrate and identify the liquid front in pharmaceutical tablets. However, previous studies were limited to samples suitable for a flow cell environment, i.e. flat cylindrical disk shapes; thus, most commercial tablets could only be measured with prior destructive sample preparation. This study presents a new experimental setup named open immersion to measure a wide range of pharmaceutical tablets in their intact form. Besides, a series of data processing techniques to extract subtle features of the advancing liquid front are designed and utilised, effectively increasing the maximum thickness of tablets that can be analysed. We used the new method and successfully measured the liquid ingress profiles for a set of oval convex tablets prepared from a complex eroding immediate-release formulation.


Subject(s)
Chemistry, Pharmaceutical , Terahertz Imaging , Chemistry, Pharmaceutical/methods , Terahertz Radiation , Tablets , Solubility , Technology, Pharmaceutical/methods , Terahertz Imaging/methods
6.
Int J Pharm ; 630: 122456, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36503850

ABSTRACT

Coated tablets introduce complexity to the dissolution process, even with readily soluble immediate release coating layers. Therefore, a more detailed understanding of the physical steps involved in the dissolution process can improve the efficiency of formulation and process design. The current study uses terahertz pulsed imaging to visualise the hydration process of microcrystalline cellulose (MCC) tablet cores that were film coated with an immediate release coating formulation upon exposure to the dissolution medium. Film coated tablets that were prepared from three levels of core porosity (10%, 20% and 30%) and with coating thickness in the range of 30µm to 250µm were investigated. It was possible to resolve and quantify the distinct stages of wetting of the coating layer, swelling of the MCC particles at the core surface, and dissolution of the coating layer followed by the ingress of dissolution media into the tablet core. The liquid transport process through the coating layer was highly consistent and scalable. The penetration rate through the coating layer and the tablet core both strongly depended on coating thickness and core porosity.


Subject(s)
Terahertz Imaging , Solubility , Terahertz Imaging/methods , Tablets , Porosity
7.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36316279

ABSTRACT

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Water , Solvents
8.
Angew Chem Weinheim Bergstr Ger ; 135(7): e202212063, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-38516046

ABSTRACT

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2O to D2O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.

9.
Cryst Growth Des ; 22(6): 3961-3972, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35673396

ABSTRACT

Terahertz time-domain spectroscopy in a transmission geometry combined with visual analysis was used to investigate the crystallization process of MgSO4 solution. Careful spectral analysis of both a feature at 1.6 THz and the overall magnitude of absorption allowed the extraction of information about the liquid phase before and during crystallization, aiding the investigation of solvation dynamics and the behavior of molecular species at phase boundaries. The method was reproducibly applied to a number of measurements on a series of solutions of three chosen concentrations at different temperatures. When increasing temperature at the end of the measurement, the dissolution of crystals was observed as well. The temperature-dependent absorption data of the semicrystalline systems were converted to the solvent concentrations using a recently developed method. Solutions of a series of concentrations were also investigated in the temperature range of 4-25 °C. The results were compared to the theoretical calculated values, and the consistent differences proved the existence of a hydration shell around the salt ions whose behavior is different from bulk water. Future work will focus on triggering nucleation at specific positions in order to study the very beginning of the crystallization process. MgSO4 heptahydrate is used as a model system in this study, while the concept and the setup can be applied to other systems.

10.
Mol Pharm ; 19(7): 2380-2389, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35670498

ABSTRACT

This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.


Subject(s)
Terahertz Spectroscopy , Calorimetry, Differential Scanning , Powders/chemistry , Printing, Three-Dimensional , Reproducibility of Results , Solubility , Terahertz Spectroscopy/methods
11.
Int J Pharm ; 619: 121703, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35351529

ABSTRACT

Dissolution of pharmaceutical tablets is a complex process, especially for coated tablets where layered structures form an additional barrier for liquid transport into the porous tablet matrix. A better understanding of the role of the coating structure in the mass transport processes that govern drug release, starting with the wetting of the coating layer by the dissolution medium, can benefit the formulation design and optimisation of the production. For this study, terahertz pulsed imaging was used to investigate how dissolution medium can penetrate coated tablets. In order to focus on the fundamental process, the model system for this proof-of-principle study consisted of tablet cores made from pure microcrystalline cellulose compacted to a defined porosity coated with Opadry II, a PVA-based immediate release coating blend. The coating was applied to a single side of flat-faced tablets using vacuum compression moulding. It was possible to resolve the hydration of the coating layer and the subsequent liquid ingress into the dry tablet core. The analysis revealed a discontinuity in density at the interface between coating and core, where coating polymer could enter the pore space at the immediate surface of the tablet cores during the coating process. This structure affected the liquid transport of the dissolution medium into the core. We found evidence for the formation of a gel layer upon hydration of the coating polymer. The porosity of the tablet core impacted the quality of coating and thus affected its dissolution performance (r =  0.6932 for the effective liquid penetration rate RPeff and the core porosity). This study established a methodology and can facilitate a more in-depth understanding of the role of coating on tablet dissolution.


Subject(s)
Terahertz Imaging , Drug Liberation , Polymers/chemistry , Porosity , Solubility , Tablets/chemistry , Tablets, Enteric-Coated , Terahertz Imaging/methods
12.
Anal Chem ; 94(3): 1713-1716, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34994536

ABSTRACT

A versatile setup based on a microfluidic platform allows investigation of liquid samples at various temperatures with terahertz time-domain spectroscopy. The setup is applied to develop a novel method that performs temperature and concentration calibrations of liquid samples at terahertz frequencies. Other than measuring the concentration of pure liquid phase solutions, it enables the studies of local concentration of semicrystalline systems. An equivalent solute concentration during crystallization can be calculated from the extracted absorption at low frequencies. The MgSO4-water system is discussed as an example to illustrate the idea of this method.

13.
Mol Pharm ; 19(1): 227-234, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34854685

ABSTRACT

Terahertz time-domain spectroscopy (THz-TDS) is applied to two polymorphs of acetylsalicylic acid (aspirin), and the experimental spectra are compared to lattice dynamical calculations using high accuracy density functional theory. The calculations confirm that forms I and II have very close energetic and thermodynamic properties and also that they show similar spectral features in the far-infrared region, reflecting the high degree of similarity in their crystal structures. Unique vibrational modes are identified for each polymorph which allow them to be distinguished using THz-TDS measurements. The observation of spectral features attributable to both polymorphic forms in a single sample, however, provides further evidence to support the hypothesis that crystalline aspirin typically comprises intergrown domains of forms I and II. Differences observed in the baseline of the measured THz-TDS spectra indicate a greater degree of structural disorder in the samples of form II. Calculated Gibbs free-energy curves show a turning point at 75 K, inferring that form II is expected to be more stable than form I above this temperature as a result of its greater vibrational entropy. The calculations do not account for any differences in configurational entropy that may arise from expected structural defects. Further computational work on these structures, such as ab initio molecular dynamics, would be very useful to further explore this perspective. Here, aspirin is a model system to show how the additional insight from the low-frequency vibrational information complements the structural data and allows for quantitative thermodynamic information of pharmaceutical polymorphs to be extracted. The methodology is directly applicable to other polymorphic systems.


Subject(s)
Aspirin/chemistry , Crystallization , Terahertz Spectroscopy/methods , Thermodynamics , Vibration
14.
Mol Pharm ; 18(9): 3578-3587, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34428059

ABSTRACT

While theophylline has been extensively studied with multiple polymorphs discovered, there is still currently no conclusive structure for the metastable theophylline form III. In this present work, by combining more widely used techniques such as X-ray diffraction and thermogravimetric analysis with more emerging techniques like low-frequency Raman and terahertz time-domain spectroscopy, to analyze the structure and dynamics of a crystalline system, it was possible to provide further evidence that the form III structure has a theophylline monohydrate structure with the water molecules removed. Solid-state density functional theory simulations were paramount in proving that this proposed structure is correct and explain how vibrational modes within the crystal structures feature and govern polymorphic transitions and the metastable form III. Through the insight provided by both simulated and experimental results, it was possible to decisively conclude the elusive crystal structure of theophylline form III. It was also shown that the correct space group for theophylline monohydrate is not P21/n but, in fact, Pc.


Subject(s)
Theophylline/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Spectrum Analysis, Raman , Terahertz Spectroscopy , Thermogravimetry , Vibration , X-Ray Diffraction
15.
Pharmaceutics ; 13(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201663

ABSTRACT

The kinetics of water transport into tablets, and how it can be controlled by the formulation as well as the tablet microstructure, are of central importance in order to design and control the dissolution and drug release process, especially for immediate release tablets. This research employed terahertz pulsed imaging to measure the process of water penetrating through tablets using a flow cell. Tablets were prepared over a range of porosity between 10% to 20%. The formulations consist of two drugs (MK-8408: ruzasvir as a spray dried intermediate, and MK-3682: uprifosbuvir as a crystalline drug substance) and NaCl (0% to 20%) at varying levels of concentrations as well as other excipients. A power-law model is found to fit the liquid penetration exceptionally well (average R2>0.995). For each formulation, the rate of water penetration, extent of swelling and the USP dissolution rate were compared. A factorial analysis then revealed that the tablet porosity was the dominating factor for both liquid penetration and dissolution. NaCl more significantly influenced liquid penetration due to osmotic driving force as well as gelling suppression, but there appears to be little difference when NaCl loading in the formulation increases from 5% to 10%. The level of spray dried intermediate was observed to further limit the release of API in dissolution.

16.
Int J Pharm X ; 3: 100079, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027385

ABSTRACT

Terahertz time-domain spectroscopy (THz-TDS) is a novel technique which has been applied for pore structure analysis and porosity measurements. For this, mainly the anisotropic Bruggeman (AB-EMA) model is applied to correlate the effective refractive index (n eff) of a tablet and the porosity as well as to evaluate the pore shape based on the depolarisation factor L. This paper investigates possible error sources of the AB-EMA for THz-TDS based tablet analysis. The effect of absorption and tablet anisotropy - changes of pore shape with porosity and density distribution - have been investigated. The results suggest that high tablet absorption has a negligible effect on the accuracy of the AB-EMA. In regards of tablet anisotropy the accuracy of the porosity determination is not impaired significantly. However, density distribution and variations in the pore shape with porosity resulted in an unreliable extraction of the tablet pore shape. As an extension of the AB-EMA a new concept was introduced to convert the model into bounds for L. This new approach was found useful to investigate tablet pore shape but also the applicability of the AB-EMA for an unknown set of data.

17.
J Pharm Sci ; 110(9): 3221-3229, 2021 09.
Article in English | MEDLINE | ID: mdl-34022194

ABSTRACT

The use of a mixture of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) was investigated for microwave-induced in situ amorphization of celecoxib (CCX) inside compacts. Such amorphization requires the presence of a dipolar excipient in the formulation to ensure heating of the compact by absorption of the microwaves. Previously, the hygroscopic nature of PVP was exploited for this purpose. By exposing PVP-based compacts for set time intervals at defined relative humidity, controlled water sorption into the compacts was achieved. In the present study, PEG was proposed as the microwave absorbing excipient instead of water, to avoid the water sorption step. However, it was found that PEG alone melted upon exposure to microwave radiation and caused the compact to deform. Furthermore, CCX was found to recrystallize upon cooling in PEG-based formulations. Hence, a mixture of PEG and PVP was used, where the presence of PVP preserved the physical shape of the compact, and the physical state of the amorphous solid dispersion. To study the impact of the polymer mixture, different compact compositions of CCX, PEG and PVP were prepared. When exposing the compacts to microwave radiation, it was found that the PEG:PVP ratio was critical for in situ amorphization and that complete amorphization was only achieved above a certain temperature threshold.


Subject(s)
Microwaves , Povidone , Celecoxib , Excipients , Polyethylene Glycols , Solubility
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001606

ABSTRACT

Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.


Subject(s)
Ammonia/chemistry , Glutamine/chemistry , Peptides/chemistry , Density Functional Theory , Fluorescence , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Optics and Photonics/methods
19.
Anal Chem ; 93(4): 2449-2455, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33401901

ABSTRACT

In the field of non-destructive testing, terahertz sensing has been used to analyze a wide range of materials where the most successful applications have involved materials that are semi-transparent to terahertz radiation. In this work, we demonstrate the sensitivity of terahertz time-domain spectroscopy to quantify water absorption in hygrothermally aged simple and commercial epoxy systems supported by conventional gravimetric analysis.

20.
J Pharm Sci ; 110(5): 2083-2092, 2021 05.
Article in English | MEDLINE | ID: mdl-33307044

ABSTRACT

There is a clear need for a robust process analytical technology tool that can be used for on-line/in-line prediction of dissolution and disintegration characteristics of pharmaceutical tablets during manufacture. Tablet porosity is a reliable and fundamental critical quality attribute which controls key mass transport mechanisms that govern disintegration and dissolution behavior. A measurement protocol was developed to measure the total porosity of a large number of tablets in transmission without the need for any sample preparation. By using this fast and non-destructive terahertz spectroscopy method it is possible to predict the disintegration and dissolution of drug from a tablet in less than a second per sample without the need of a chemometric model. The validity of the terahertz porosity method was established across a range of immediate release (IR) formulations of ibuprofen and indomethacin tablets of varying geometries as well as with and without debossing. Excellent correlation was observed between the measured terahertz porosity, dissolution characteristics (time to release 50% drug content) and disintegration time for all samples. These promising results and considering the robustness of the terahertz method pave the way for a fully automated at-line/on-line porosity sensor for real time release testing of IR tablets dissolution.


Subject(s)
Terahertz Spectroscopy , Drug Compounding , Porosity , Solubility , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...