Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Res ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702407

ABSTRACT

Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.

2.
Radiat Res ; 200(4): 366-373, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37772737

ABSTRACT

Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.


Subject(s)
Radiation-Sensitizing Agents , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Disease Models, Animal , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Light
3.
Appl Radiat Isot ; 169: 109568, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33385758

ABSTRACT

Few places in the world produce iodine-125. In Brazil, the first production was achieved by using the IEA-R1 nuclear reactor located at Nuclear and Energy Research Institute - IPEN. To verify the quality of iodine-125 produced, and the amount of contaminants such as iodine-126, cesium-134 and caesium-137 among others, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV. The method employed here was successful in producing and measurement of iodine-125.

4.
Curr Radiopharm ; 12(3): 187-200, 2019.
Article in English | MEDLINE | ID: mdl-30924426

ABSTRACT

BACKGROUND: A significant number of developing countries have no facilities to produce medical radioisotopes and radiopharmaceuticals. OBJECTIVE: In this paper we show that access to life-saving radioisotopes and radiopharmaceuticals and the geographical distribution of corresponding infrastructure is highly unbalanced worldwide. METHODS: We discuss the main issues which need to be addressed in order to establish the production of radioisotopes and radiopharmaceuticals, which are especially important for developing countries as newcomers in the field. The data was gathered from several sources, including databases maintained by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), and other international organizations; personal interactions with representatives in the nuclear medicine field from different regions of the world; and relevant literature. RESULTS: Developing radioisotope and radiopharmaceutical production program and installing corresponding infrastructure requires significant investments, both man-power and financial. Support already exists to help developing countries establish their medical radioisotope production installations from several organizations, such as IAEA. CONCLUSION: This work clearly shows that access to life-saving radioisotopes and the geographical distribution of corresponding infrastructure is highly unbalanced. Technology transfer is important as it not only immediately benefits patients, but also provides employment, economic activity and general prosperity in the region to where the technology transfer is implemented.


Subject(s)
Manufacturing and Industrial Facilities , Radioisotopes , Radiopharmaceuticals , Cyclotrons , Developing Countries , International Agencies , Nuclear Medicine , Radionuclide Generators
5.
Med Phys ; 42(4): 1566-74, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832047

ABSTRACT

PURPOSE: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. METHODS: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR (192)Ir source: TLD-100™, Gafchromic(®) EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the penelope/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. RESULTS: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the penelope/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. CONCLUSIONS: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.


Subject(s)
Algorithms , Brachytherapy/instrumentation , Brachytherapy/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Computer Simulation , Equipment Design , Film Dosimetry , Humans , Iridium Radioisotopes , Monte Carlo Method , Radiotherapy Dosage , Software , Thermoluminescent Dosimetry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...