Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 9: 517, 2019.
Article in English | MEDLINE | ID: mdl-31275852

ABSTRACT

WWOX (WW domain containing oxidoreductase) expression loss is common in various cancers and characteristic of poor prognosis. Deletions, translocations, and loss of expression affecting the WWOX gene are a common feature of various B cell neoplasms such as certain B cell lymphomas and multiple myeloma. However, the role of this common abnormality in B cell tumor initiation and/or progression has not been defined. In this study, we conditionally deleted Wwox early in B cell development by means of breeding Cd19-Cre transgenic mice crossed to Wwox floxed mice (Cd19 Wwox KO). We observed a significant reduced survival in Cd19 Wwox KO mice and the development of B cell neoplasms including B cell lymphomas, plasma cell neoplasias characterized by increased numbers of CD138+ populations as well as monoclonal gammopathies detected by serum protein electrophoresis. To investigate whether Wwox loss could play a role in genomic instability, we analyzed DNA repair functions during immunoglobulin class switch joining between DNA segments in antibody genes. While class switch recombination (CSR) was only slightly impaired, Wwox deficiency resulted in a dramatic shift of double strand break (DSB) repair from normal classical-NHEJ toward the microhomology-mediated alternative-NHEJ pathway, a pathway associated with chromosome translocations and genome instability. Consistent with this, Wwox deficiency resulted in a marked increase of spontaneous translocations during CSR. This work defines for the first time a role for Wwox for maintaining B cell genome stability during a process that can promote neoplastic transformation and monoclonal gammopathies.

2.
Mol Cell ; 69(5): 725-727, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499130

ABSTRACT

PRDM9 determines the localization of meiotic recombination hotspots, which are associated with histone H3 methylation. It is not known whether PRDM9's methyltransferase activity is required or how some PRDM9 alleles can dominate the distribution of hotspots over other alleles. Diagouraga, Clément, and colleagues (2018) show that methyltransferase activity is required for hotspot localization and that this activity is additive in combination, suggesting that the dominance of particular alleles is simply proportional to the frequency of targeted sites.


Subject(s)
Binding Sites , Methyltransferases , DNA , Methylation , Sulfonamides
3.
Cell ; 171(3): 601-614.e13, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28942922

ABSTRACT

Faithful chromosome segregation in meiosis requires crossover (CO) recombination, which is regulated to ensure at least one CO per homolog pair. We investigate the failure to ensure COs in juvenile male mice. By monitoring recombination genome-wide using cytological assays and at hotspots using molecular assays, we show that juvenile mouse spermatocytes have fewer COs relative to adults. Analysis of recombination in the absence of MLH3 provides evidence for greater utilization in juveniles of pathways involving structure-selective nucleases and alternative complexes, which can act upon precursors to generate noncrossovers (NCOs) at the expense of COs. We propose that some designated CO sites fail to mature efficiently in juveniles owing to inappropriate activity of these alternative repair pathways, leading to chromosome mis-segregation. We also find lower MutLγ focus density in juvenile human spermatocytes, suggesting that weaker CO maturation efficiency may explain why younger men have a higher risk of fathering children with Down syndrome.


Subject(s)
Aging , Chromosome Segregation , Meiosis , Recombination, Genetic , Spermatocytes/metabolism , Animals , Chromosome Aberrations , DNA Repair , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Spermatocytes/cytology
4.
PLoS Genet ; 13(6): e1006818, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28570559

ABSTRACT

DNA polymerase ν (pol ν), encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν-defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν-disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ). We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ) supports such a specialized role.


Subject(s)
DNA Damage , DNA-Directed DNA Polymerase/genetics , Homologous Recombination , Immunoglobulin Class Switching , Animals , Cells, Cultured , DNA End-Joining Repair , DNA-Directed DNA Polymerase/metabolism , Female , Fibroblasts/metabolism , Humans , Longevity , Male , Meiosis , Mice , Mice, Inbred C57BL , Polymorphism, Genetic
6.
BMC Cancer ; 13: 593, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24330518

ABSTRACT

BACKGROUND: The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. METHODS: Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFß-signaling. RESULTS: WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFß responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFß target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOX(lo)/ANGPTL4(hi) cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFß targeted therapies. CONCLUSIONS: We show for the first time that WWOX modulates SMAD3 signaling in breast cells via direct WW-domain mediated binding and potential cytoplasmic sequestration of SMAD3 protein. Since loss of WWOX expression increases with breast cancer progression and it behaves as an inhibitor of SMAD3 transcriptional activity these observations may help explain, at least in part, the paradoxical pro-tumorigenic effects of TGFß signaling in advanced breast cancer.


Subject(s)
Oxidoreductases/physiology , Smad3 Protein/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Proteins/physiology , Angiopoietin-Like Protein 4 , Angiopoietins/genetics , Angiopoietins/metabolism , Cell Adhesion , Cell Movement , Cell Proliferation , Female , Humans , MCF-7 Cells , Oxidoreductases/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Transcriptional Activation , Transcriptome , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Proteins/chemistry , WW Domain-Containing Oxidoreductase
SELECTION OF CITATIONS
SEARCH DETAIL
...